Gavin Mischler, Yinghao Aaron Li, Stephan Bickel, Ashesh D. Mehta, Nima Mesgarani
{"title":"Contextual feature extraction hierarchies converge in large language models and the brain","authors":"Gavin Mischler, Yinghao Aaron Li, Stephan Bickel, Ashesh D. Mehta, Nima Mesgarani","doi":"10.1038/s42256-024-00925-4","DOIUrl":null,"url":null,"abstract":"<p>Recent advancements in artificial intelligence have sparked interest in the parallels between large language models (LLMs) and human neural processing, particularly in language comprehension. Although previous research has demonstrated similarities between LLM representations and neural responses, the computational principles driving this convergence—especially as LLMs evolve—remain elusive. Here we used intracranial electroencephalography recordings from neurosurgical patients listening to speech to investigate the alignment between high-performance LLMs and the language-processing mechanisms of the brain. We examined a diverse selection of LLMs with similar parameter sizes and found that as their performance on benchmark tasks improves, they not only become more brain-like, reflected in better neural response predictions from model embeddings, but they also align more closely with the hierarchical feature extraction pathways of the brain, using fewer layers for the same encoding. Additionally, we identified commonalities in the hierarchical processing mechanisms of high-performing LLMs, revealing their convergence towards similar language-processing strategies. Finally, we demonstrate the critical role of contextual information in both LLM performance and brain alignment. These findings reveal converging aspects of language processing in the brain and LLMs, offering new directions for developing models that better align with human cognitive processing.</p>","PeriodicalId":48533,"journal":{"name":"Nature Machine Intelligence","volume":"80 1","pages":""},"PeriodicalIF":18.8000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Machine Intelligence","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1038/s42256-024-00925-4","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Recent advancements in artificial intelligence have sparked interest in the parallels between large language models (LLMs) and human neural processing, particularly in language comprehension. Although previous research has demonstrated similarities between LLM representations and neural responses, the computational principles driving this convergence—especially as LLMs evolve—remain elusive. Here we used intracranial electroencephalography recordings from neurosurgical patients listening to speech to investigate the alignment between high-performance LLMs and the language-processing mechanisms of the brain. We examined a diverse selection of LLMs with similar parameter sizes and found that as their performance on benchmark tasks improves, they not only become more brain-like, reflected in better neural response predictions from model embeddings, but they also align more closely with the hierarchical feature extraction pathways of the brain, using fewer layers for the same encoding. Additionally, we identified commonalities in the hierarchical processing mechanisms of high-performing LLMs, revealing their convergence towards similar language-processing strategies. Finally, we demonstrate the critical role of contextual information in both LLM performance and brain alignment. These findings reveal converging aspects of language processing in the brain and LLMs, offering new directions for developing models that better align with human cognitive processing.
期刊介绍:
Nature Machine Intelligence is a distinguished publication that presents original research and reviews on various topics in machine learning, robotics, and AI. Our focus extends beyond these fields, exploring their profound impact on other scientific disciplines, as well as societal and industrial aspects. We recognize limitless possibilities wherein machine intelligence can augment human capabilities and knowledge in domains like scientific exploration, healthcare, medical diagnostics, and the creation of safe and sustainable cities, transportation, and agriculture. Simultaneously, we acknowledge the emergence of ethical, social, and legal concerns due to the rapid pace of advancements.
To foster interdisciplinary discussions on these far-reaching implications, Nature Machine Intelligence serves as a platform for dialogue facilitated through Comments, News Features, News & Views articles, and Correspondence. Our goal is to encourage a comprehensive examination of these subjects.
Similar to all Nature-branded journals, Nature Machine Intelligence operates under the guidance of a team of skilled editors. We adhere to a fair and rigorous peer-review process, ensuring high standards of copy-editing and production, swift publication, and editorial independence.