CycP:用于控制耐药性金黄色葡萄球菌的新型自组装囊泡形成环状抗菌肽。

IF 3.8 3区 医学 Q2 ENGINEERING, BIOMEDICAL Bioengineering Pub Date : 2024-08-21 DOI:10.3390/bioengineering11080855
Piyush Baindara, Dinata Roy, Santi M Mandal
{"title":"CycP:用于控制耐药性金黄色葡萄球菌的新型自组装囊泡形成环状抗菌肽。","authors":"Piyush Baindara, Dinata Roy, Santi M Mandal","doi":"10.3390/bioengineering11080855","DOIUrl":null,"url":null,"abstract":"<p><p>Antimicrobial peptides (AMPs) are considered a promising alternative to conventional antibiotics to fight against the rapid evolution of antibiotic resistance. Other than their potent antimicrobial properties, AMP-based vesicles can be used as efficient drug-delivery vehicles. In the present study, we synthesized and characterized a new cyclic AMP, consisting of all-hydrophobic cores with antimicrobial activity against <i>S. aureus</i>. Interestingly, CycP undergoes supramolecular self-assembly, and self-assembled CycP (sCycP) vesicles are characterized under an electron microscope; however, these vesicles do not display antimicrobial activity. Next, sCycP vesicles are used in combination with SXT (sulfamethoxazole-trimethoprim) vesicles to check the drug loading and delivery capacity of sCycP vesicles to bacterial cell membranes. Interestingly, sCycP vesicles showed synergistic action with SXT vesicles and resulted in a significant reduction in MIC against <i>S. aureus</i>. Further, electron microscopy confirmed the membrane-specific killing mechanism of SXT-loaded sCycP vesicles. Additionally, CycP showed high binding affinities with the β-lactamase of <i>S. aureus</i>, which was one of its possible antimicrobial mechanisms of action. Overall, the results suggested that CycP is a novel self-assembled dual-action cyclic AMP with non-cytotoxic properties that can be used alone as an AMP or a self-assembled drug delivery vehicle for antibiotics to combat <i>S. aureus</i> infections.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351190/pdf/","citationCount":"0","resultStr":"{\"title\":\"CycP: A Novel Self-Assembled Vesicle-Forming Cyclic Antimicrobial Peptide to Control Drug-Resistant <i>S. aureus</i>.\",\"authors\":\"Piyush Baindara, Dinata Roy, Santi M Mandal\",\"doi\":\"10.3390/bioengineering11080855\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Antimicrobial peptides (AMPs) are considered a promising alternative to conventional antibiotics to fight against the rapid evolution of antibiotic resistance. Other than their potent antimicrobial properties, AMP-based vesicles can be used as efficient drug-delivery vehicles. In the present study, we synthesized and characterized a new cyclic AMP, consisting of all-hydrophobic cores with antimicrobial activity against <i>S. aureus</i>. Interestingly, CycP undergoes supramolecular self-assembly, and self-assembled CycP (sCycP) vesicles are characterized under an electron microscope; however, these vesicles do not display antimicrobial activity. Next, sCycP vesicles are used in combination with SXT (sulfamethoxazole-trimethoprim) vesicles to check the drug loading and delivery capacity of sCycP vesicles to bacterial cell membranes. Interestingly, sCycP vesicles showed synergistic action with SXT vesicles and resulted in a significant reduction in MIC against <i>S. aureus</i>. Further, electron microscopy confirmed the membrane-specific killing mechanism of SXT-loaded sCycP vesicles. Additionally, CycP showed high binding affinities with the β-lactamase of <i>S. aureus</i>, which was one of its possible antimicrobial mechanisms of action. Overall, the results suggested that CycP is a novel self-assembled dual-action cyclic AMP with non-cytotoxic properties that can be used alone as an AMP or a self-assembled drug delivery vehicle for antibiotics to combat <i>S. aureus</i> infections.</p>\",\"PeriodicalId\":8874,\"journal\":{\"name\":\"Bioengineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11351190/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioengineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bioengineering11080855\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering11080855","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

抗菌肽(AMPs)被认为是传统抗生素的一种有前途的替代品,可用于对抗抗生素耐药性的快速演变。除了其强大的抗菌特性外,基于 AMP 的囊泡还可用作高效的药物输送载体。在本研究中,我们合成并鉴定了一种新型环状 AMP,它由全疏水性核心组成,对金黄色葡萄球菌具有抗菌活性。有趣的是,CycP 会发生超分子自组装,自组装 CycP(sCycP)囊泡在电子显微镜下进行了表征;然而,这些囊泡并没有显示出抗菌活性。接着,将 sCycP 囊泡与 SXT(磺胺甲噁唑-三甲氧苄啶)囊泡结合使用,以检测 sCycP 囊泡对细菌细胞膜的载药和递送能力。有趣的是,sCycP 囊泡与 SXT 囊泡表现出协同作用,显著降低了对金黄色葡萄球菌的 MIC。此外,电子显微镜证实了负载 SXT 的 sCycP 囊泡的膜特异性杀菌机制。此外,CycP 与金黄色葡萄球菌的 β-内酰胺酶有很高的结合亲和力,这也是其可能的抗菌作用机制之一。总之,研究结果表明,CycP 是一种新型的自组装双效环状 AMP,具有无细胞毒性特性,可单独用作 AMP 或抗生素的自组装给药载体,以对抗金黄色葡萄球菌感染。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CycP: A Novel Self-Assembled Vesicle-Forming Cyclic Antimicrobial Peptide to Control Drug-Resistant S. aureus.

Antimicrobial peptides (AMPs) are considered a promising alternative to conventional antibiotics to fight against the rapid evolution of antibiotic resistance. Other than their potent antimicrobial properties, AMP-based vesicles can be used as efficient drug-delivery vehicles. In the present study, we synthesized and characterized a new cyclic AMP, consisting of all-hydrophobic cores with antimicrobial activity against S. aureus. Interestingly, CycP undergoes supramolecular self-assembly, and self-assembled CycP (sCycP) vesicles are characterized under an electron microscope; however, these vesicles do not display antimicrobial activity. Next, sCycP vesicles are used in combination with SXT (sulfamethoxazole-trimethoprim) vesicles to check the drug loading and delivery capacity of sCycP vesicles to bacterial cell membranes. Interestingly, sCycP vesicles showed synergistic action with SXT vesicles and resulted in a significant reduction in MIC against S. aureus. Further, electron microscopy confirmed the membrane-specific killing mechanism of SXT-loaded sCycP vesicles. Additionally, CycP showed high binding affinities with the β-lactamase of S. aureus, which was one of its possible antimicrobial mechanisms of action. Overall, the results suggested that CycP is a novel self-assembled dual-action cyclic AMP with non-cytotoxic properties that can be used alone as an AMP or a self-assembled drug delivery vehicle for antibiotics to combat S. aureus infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bioengineering
Bioengineering Chemical Engineering-Bioengineering
CiteScore
4.00
自引率
8.70%
发文量
661
期刊介绍: Aims Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal: ● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings. ● Manuscripts regarding research proposals and research ideas will be particularly welcomed. ● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. ● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds. Scope ● Bionics and biological cybernetics: implantology; bio–abio interfaces ● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices ● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc. ● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology ● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering ● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation ● Translational bioengineering
期刊最新文献
Contrast-Enhancing Lesion Segmentation in Multiple Sclerosis: A Deep Learning Approach Validated in a Multicentric Cohort. Driving Deployment of Bioengineered Products-An Arduous, Sometimes Tedious, Challenging, Rewarding, Most Exciting Journey That Has to Be Made! Evaluation of Load on Cervical Disc Prosthesis by Imposing Complex Motion: Multiplanar Motion and Combined Rotational-Translational Motion. Bovine Placentome-Derived Extracellular Matrix: A Sustainable 3D Scaffold for Cultivated Meat. Comparative Study of Alternative Methods for Measuring Leg Length Discrepancy after Robot-Assisted Total Hip Arthroplasty.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1