通过离散断面法建立碳质颗粒形态、多分散性和纳米结构的动力学模型

IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2024-08-30 DOI:10.1016/j.combustflame.2024.113697
{"title":"通过离散断面法建立碳质颗粒形态、多分散性和纳米结构的动力学模型","authors":"","doi":"10.1016/j.combustflame.2024.113697","DOIUrl":null,"url":null,"abstract":"<div><p>Carbon nanoparticle (CNP) formation from hydrocarbons combustion is of high interest not only for the study of pollutant (soot) emissions, but, above all, in the area of advanced materials. CNP optical and electronical properties, relevant for practical applications, significantly change with their size, morphology, and nanostructure. This work extends a detailed soot kinetic model, based on the discrete sectional approach, to explicitly incorporate the description of CNP polydispersity, maintaining the CHEMKIN-like format. The model considers various nanosized primary particles, generated from liquid-like counterparts through the carbonization process, which successively grow or aggregate forming fractal structures. The model is validated against experimental measurements from the literature including CNP volume fraction, several morphological characteristics, number density and particle H/C ratio. Data are taken from 19 laminar flames, in different configurations (counterflow diffusion flames, premixed flat flames established on the McKenna-type burner and burner-stabilized stagnation flames) and over a wide range of operating conditions (P=1–10 atm, T<sub>max</sub>=1556-2264 K). The model captures the measured trends of all the analyzed CNP properties as a function of equivalence ratio, residence time and fuel type in premixed flames, and pressure and strain rate in counterflow flames. Model deviations from the experiments are discussed, also in comparison with other state-of-the-art soot models based on different approaches. Sensitivity analyses are performed on carbonization, coalescence, and aggregation rates, which have the largest impact on CNP morphology and are characterized by larger uncertainty compared to elementary chemical pathways.</p></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010218024004061/pdfft?md5=e34fdf45dcdfa911f579fe68ea07ff83&pid=1-s2.0-S0010218024004061-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Kinetic modeling of carbonaceous particle morphology, polydispersity and nanostructure through the discrete sectional approach\",\"authors\":\"\",\"doi\":\"10.1016/j.combustflame.2024.113697\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Carbon nanoparticle (CNP) formation from hydrocarbons combustion is of high interest not only for the study of pollutant (soot) emissions, but, above all, in the area of advanced materials. CNP optical and electronical properties, relevant for practical applications, significantly change with their size, morphology, and nanostructure. This work extends a detailed soot kinetic model, based on the discrete sectional approach, to explicitly incorporate the description of CNP polydispersity, maintaining the CHEMKIN-like format. The model considers various nanosized primary particles, generated from liquid-like counterparts through the carbonization process, which successively grow or aggregate forming fractal structures. The model is validated against experimental measurements from the literature including CNP volume fraction, several morphological characteristics, number density and particle H/C ratio. Data are taken from 19 laminar flames, in different configurations (counterflow diffusion flames, premixed flat flames established on the McKenna-type burner and burner-stabilized stagnation flames) and over a wide range of operating conditions (P=1–10 atm, T<sub>max</sub>=1556-2264 K). The model captures the measured trends of all the analyzed CNP properties as a function of equivalence ratio, residence time and fuel type in premixed flames, and pressure and strain rate in counterflow flames. Model deviations from the experiments are discussed, also in comparison with other state-of-the-art soot models based on different approaches. Sensitivity analyses are performed on carbonization, coalescence, and aggregation rates, which have the largest impact on CNP morphology and are characterized by larger uncertainty compared to elementary chemical pathways.</p></div>\",\"PeriodicalId\":280,\"journal\":{\"name\":\"Combustion and Flame\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010218024004061/pdfft?md5=e34fdf45dcdfa911f579fe68ea07ff83&pid=1-s2.0-S0010218024004061-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combustion and Flame\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010218024004061\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218024004061","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

碳氢化合物燃烧产生的碳纳米粒子(CNP)不仅在研究污染物(烟尘)排放方面具有重要意义,在先进材料领域更是如此。与实际应用相关的 CNP 光学和电子特性会随着其尺寸、形态和纳米结构的变化而发生显著变化。本研究基于离散截面法扩展了详细的烟尘动力学模型,明确纳入了对 CNP 多分散性的描述,并保持了类似 CHEMKIN 的格式。该模型考虑了通过碳化过程从液态对应物中生成的各种纳米级初级粒子,这些粒子相继生长或聚集形成分形结构。该模型根据文献中的实验测量结果进行了验证,包括 CNP 体积分数、几种形态特征、数量密度和颗粒 H/C 比。数据取自 19 种不同配置的层流火焰(逆流扩散火焰、建立在麦肯纳型燃烧器上的预混合平焰和燃烧器稳定停滞火焰),以及广泛的工作条件(P=1-10 atm,Tmax=1556-2264 K)。该模型捕捉到了所有分析的 CNP 特性的测量趋势,这些特性是等效比、停留时间和预混火焰中燃料类型以及逆流火焰中压力和应变率的函数。讨论了模型与实验的偏差,并与基于不同方法的其他先进烟尘模型进行了比较。对碳化、凝聚和聚集率进行了敏感性分析,这些因素对 CNP 形态的影响最大,而且与基本化学途径相比具有更大的不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinetic modeling of carbonaceous particle morphology, polydispersity and nanostructure through the discrete sectional approach

Carbon nanoparticle (CNP) formation from hydrocarbons combustion is of high interest not only for the study of pollutant (soot) emissions, but, above all, in the area of advanced materials. CNP optical and electronical properties, relevant for practical applications, significantly change with their size, morphology, and nanostructure. This work extends a detailed soot kinetic model, based on the discrete sectional approach, to explicitly incorporate the description of CNP polydispersity, maintaining the CHEMKIN-like format. The model considers various nanosized primary particles, generated from liquid-like counterparts through the carbonization process, which successively grow or aggregate forming fractal structures. The model is validated against experimental measurements from the literature including CNP volume fraction, several morphological characteristics, number density and particle H/C ratio. Data are taken from 19 laminar flames, in different configurations (counterflow diffusion flames, premixed flat flames established on the McKenna-type burner and burner-stabilized stagnation flames) and over a wide range of operating conditions (P=1–10 atm, Tmax=1556-2264 K). The model captures the measured trends of all the analyzed CNP properties as a function of equivalence ratio, residence time and fuel type in premixed flames, and pressure and strain rate in counterflow flames. Model deviations from the experiments are discussed, also in comparison with other state-of-the-art soot models based on different approaches. Sensitivity analyses are performed on carbonization, coalescence, and aggregation rates, which have the largest impact on CNP morphology and are characterized by larger uncertainty compared to elementary chemical pathways.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Automatization of theoretical kinetic data generation for tabulated TS models building - Part 1: Application to 1,3-H-shift reactions Turbulent spray combustion modeling in reduced tabulation parameter space by similarity mapping Numerical investigation of lean methane flame response to NRP discharges actuation Oxidation of butane-2,3-dione at high pressure: Implications for ketene chemistry Ignition and combustion characteristics of boron particles under reduced pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1