Xueting Yang , Gezi Bai , Zhenxing Shen , Shasha Huang , Diwei Wang , Hongmei Xu
{"title":"中国西安上空水溶性离子的年变化:洞察硝酸盐对 PM2.5 的重要贡献","authors":"Xueting Yang , Gezi Bai , Zhenxing Shen , Shasha Huang , Diwei Wang , Hongmei Xu","doi":"10.1016/j.apr.2024.102296","DOIUrl":null,"url":null,"abstract":"<div><p>Water-soluble inorganic ions (WSIIs) in PM<sub>2.5</sub> play an important role in the formation of air pollution, which in turn affects climate change and human health. The formation pathways and factors influencing WSIIs have received extensive attention. Here, we analyzed the contents of nine WSIIs in PM<sub>2.5</sub>, collected from 2015 to 2021 in Xi'an City, China, with the aim of investigating long-term atmospheric pollution changes. Sulfate (SO<sub>4</sub><sup>2−</sup>), nitrate (NO<sub>3</sub><sup>−</sup>), and ammonium (NH<sub>4</sub><sup>+</sup>) together contributed to 66.8%–88.1% and Ca<sup>2+</sup> accounted for 5.1%–13.1% of total WSIIs. The relative content of SO<sub>4</sub><sup>2−</sup> exhibited a gradually decreasing trend (from 49.80% in 2015 to 29.98% in 2021), whereas NO<sub>3</sub><sup>−</sup> was increased in the same time period (from 13.96% in 2015 to 29.92% in 2021). In addition, the nitrogen oxidation rate showed an annual increase in this period, whereas the sulfur oxidation rate decreased, and their fitted curves intersected in 2019. The key finding of this study is that the air pollution pattern in Xi'an has changed from sulfate-dominated to nitrate-dominated particles, as evidenced by the feature importance results of the random forest model. We propose that more attention should be paid to vehicle emissions and road dust as pollution sources. Overall, the findings of this study serve as a useful reference to aid relevant authorities in devising more effective policies for controlling PM<sub>2.5</sub> pollution at its source.</p></div>","PeriodicalId":8604,"journal":{"name":"Atmospheric Pollution Research","volume":"15 12","pages":"Article 102296"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Yearly variations of water-soluble ions over Xi'an, China: Insight into the importance contribution of nitrate to PM2.5\",\"authors\":\"Xueting Yang , Gezi Bai , Zhenxing Shen , Shasha Huang , Diwei Wang , Hongmei Xu\",\"doi\":\"10.1016/j.apr.2024.102296\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Water-soluble inorganic ions (WSIIs) in PM<sub>2.5</sub> play an important role in the formation of air pollution, which in turn affects climate change and human health. The formation pathways and factors influencing WSIIs have received extensive attention. Here, we analyzed the contents of nine WSIIs in PM<sub>2.5</sub>, collected from 2015 to 2021 in Xi'an City, China, with the aim of investigating long-term atmospheric pollution changes. Sulfate (SO<sub>4</sub><sup>2−</sup>), nitrate (NO<sub>3</sub><sup>−</sup>), and ammonium (NH<sub>4</sub><sup>+</sup>) together contributed to 66.8%–88.1% and Ca<sup>2+</sup> accounted for 5.1%–13.1% of total WSIIs. The relative content of SO<sub>4</sub><sup>2−</sup> exhibited a gradually decreasing trend (from 49.80% in 2015 to 29.98% in 2021), whereas NO<sub>3</sub><sup>−</sup> was increased in the same time period (from 13.96% in 2015 to 29.92% in 2021). In addition, the nitrogen oxidation rate showed an annual increase in this period, whereas the sulfur oxidation rate decreased, and their fitted curves intersected in 2019. The key finding of this study is that the air pollution pattern in Xi'an has changed from sulfate-dominated to nitrate-dominated particles, as evidenced by the feature importance results of the random forest model. We propose that more attention should be paid to vehicle emissions and road dust as pollution sources. Overall, the findings of this study serve as a useful reference to aid relevant authorities in devising more effective policies for controlling PM<sub>2.5</sub> pollution at its source.</p></div>\",\"PeriodicalId\":8604,\"journal\":{\"name\":\"Atmospheric Pollution Research\",\"volume\":\"15 12\",\"pages\":\"Article 102296\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Pollution Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1309104224002617\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1309104224002617","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Yearly variations of water-soluble ions over Xi'an, China: Insight into the importance contribution of nitrate to PM2.5
Water-soluble inorganic ions (WSIIs) in PM2.5 play an important role in the formation of air pollution, which in turn affects climate change and human health. The formation pathways and factors influencing WSIIs have received extensive attention. Here, we analyzed the contents of nine WSIIs in PM2.5, collected from 2015 to 2021 in Xi'an City, China, with the aim of investigating long-term atmospheric pollution changes. Sulfate (SO42−), nitrate (NO3−), and ammonium (NH4+) together contributed to 66.8%–88.1% and Ca2+ accounted for 5.1%–13.1% of total WSIIs. The relative content of SO42− exhibited a gradually decreasing trend (from 49.80% in 2015 to 29.98% in 2021), whereas NO3− was increased in the same time period (from 13.96% in 2015 to 29.92% in 2021). In addition, the nitrogen oxidation rate showed an annual increase in this period, whereas the sulfur oxidation rate decreased, and their fitted curves intersected in 2019. The key finding of this study is that the air pollution pattern in Xi'an has changed from sulfate-dominated to nitrate-dominated particles, as evidenced by the feature importance results of the random forest model. We propose that more attention should be paid to vehicle emissions and road dust as pollution sources. Overall, the findings of this study serve as a useful reference to aid relevant authorities in devising more effective policies for controlling PM2.5 pollution at its source.
期刊介绍:
Atmospheric Pollution Research (APR) is an international journal designed for the publication of articles on air pollution. Papers should present novel experimental results, theory and modeling of air pollution on local, regional, or global scales. Areas covered are research on inorganic, organic, and persistent organic air pollutants, air quality monitoring, air quality management, atmospheric dispersion and transport, air-surface (soil, water, and vegetation) exchange of pollutants, dry and wet deposition, indoor air quality, exposure assessment, health effects, satellite measurements, natural emissions, atmospheric chemistry, greenhouse gases, and effects on climate change.