通过尽量减少遗憾,加强不确定情况下的能源系统复原力规划

{"title":"通过尽量减少遗憾,加强不确定情况下的能源系统复原力规划","authors":"","doi":"10.1016/j.rset.2024.100093","DOIUrl":null,"url":null,"abstract":"<div><p>This study applies the concept of regret in decision-making under uncertainty to an energy system optimization model to identify optimal robust and stochastic solutions amongst several design options. The approach is demonstrated on the case study of Accra, Ghana, considering uncertainties pertinent to the city, particularly under climate change. The evaluated uncertainty scenarios consider volatile fossil fuel supply, reduced hydropower generation, rising demand due to climate change-driven rural-urban migration and global warming, unplanned power outages due to increasing natural disasters, and currency depreciation. The evaluated systems include Pareto-optimal system solutions typically under consideration by planners, which balance costs and CO<sub>2</sub> emissions. The regret performance is evaluated for each system subject to each uncertainty scenario. A near-CO<sub>2</sub>-minimized system is the optimal robust and stochastic least-regret solution. Two factors drive this result: (1) a diverse technology set, which provides generation and cross-sectoral flexibility for adaptation under uncertainty, and (2) effectively balancing rising investment and operation costs with decreasing unmet demand costs. The demonstrated method provides energy planners and policymakers with a pragmatic, effective and fast approach, which offers new insights into long-term energy system planning to improve resilience under uncertainty, supporting the aims of the United Nations Sustainable Development Goals 7 and 11.</p></div>","PeriodicalId":101071,"journal":{"name":"Renewable and Sustainable Energy Transition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2667095X24000175/pdfft?md5=ef2246afc536c52842f9c9fb4a178603&pid=1-s2.0-S2667095X24000175-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Strengthening energy system resilience planning under uncertainty by minimizing regret\",\"authors\":\"\",\"doi\":\"10.1016/j.rset.2024.100093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study applies the concept of regret in decision-making under uncertainty to an energy system optimization model to identify optimal robust and stochastic solutions amongst several design options. The approach is demonstrated on the case study of Accra, Ghana, considering uncertainties pertinent to the city, particularly under climate change. The evaluated uncertainty scenarios consider volatile fossil fuel supply, reduced hydropower generation, rising demand due to climate change-driven rural-urban migration and global warming, unplanned power outages due to increasing natural disasters, and currency depreciation. The evaluated systems include Pareto-optimal system solutions typically under consideration by planners, which balance costs and CO<sub>2</sub> emissions. The regret performance is evaluated for each system subject to each uncertainty scenario. A near-CO<sub>2</sub>-minimized system is the optimal robust and stochastic least-regret solution. Two factors drive this result: (1) a diverse technology set, which provides generation and cross-sectoral flexibility for adaptation under uncertainty, and (2) effectively balancing rising investment and operation costs with decreasing unmet demand costs. The demonstrated method provides energy planners and policymakers with a pragmatic, effective and fast approach, which offers new insights into long-term energy system planning to improve resilience under uncertainty, supporting the aims of the United Nations Sustainable Development Goals 7 and 11.</p></div>\",\"PeriodicalId\":101071,\"journal\":{\"name\":\"Renewable and Sustainable Energy Transition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2667095X24000175/pdfft?md5=ef2246afc536c52842f9c9fb4a178603&pid=1-s2.0-S2667095X24000175-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Renewable and Sustainable Energy Transition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667095X24000175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable and Sustainable Energy Transition","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667095X24000175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究将不确定性下决策中的 "遗憾 "概念应用于能源系统优化模型,以确定若干设计方案中的最佳稳健随机解决方案。该方法在加纳阿克拉的案例研究中得到了验证,考虑到了与该城市相关的不确定性,尤其是气候变化下的不确定性。所评估的不确定性情景包括化石燃料供应不稳定、水力发电量减少、气候变化导致的城乡人口迁移和全球变暖造成的需求上升、自然灾害增多造成的计划外停电以及货币贬值。所评估的系统包括规划者通常考虑的帕累托最优系统解决方案,该方案兼顾了成本和二氧化碳排放量。在每种不确定情况下,对每个系统的遗憾性能进行评估。接近二氧化碳最小化的系统是最优的稳健随机最小后悔方案。导致这一结果的因素有两个:(1)多样化的技术集,为不确定情况下的适应提供了发电和跨部门灵活性;(2)有效地平衡了不断上升的投资和运营成本与不断下降的未满足需求成本。所展示的方法为能源规划者和政策制定者提供了一种务实、有效和快速的方法,为长期能源系统规划提供了新的见解,以提高不确定性下的适应能力,支持联合国可持续发展目标 7 和 11 的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Strengthening energy system resilience planning under uncertainty by minimizing regret

This study applies the concept of regret in decision-making under uncertainty to an energy system optimization model to identify optimal robust and stochastic solutions amongst several design options. The approach is demonstrated on the case study of Accra, Ghana, considering uncertainties pertinent to the city, particularly under climate change. The evaluated uncertainty scenarios consider volatile fossil fuel supply, reduced hydropower generation, rising demand due to climate change-driven rural-urban migration and global warming, unplanned power outages due to increasing natural disasters, and currency depreciation. The evaluated systems include Pareto-optimal system solutions typically under consideration by planners, which balance costs and CO2 emissions. The regret performance is evaluated for each system subject to each uncertainty scenario. A near-CO2-minimized system is the optimal robust and stochastic least-regret solution. Two factors drive this result: (1) a diverse technology set, which provides generation and cross-sectoral flexibility for adaptation under uncertainty, and (2) effectively balancing rising investment and operation costs with decreasing unmet demand costs. The demonstrated method provides energy planners and policymakers with a pragmatic, effective and fast approach, which offers new insights into long-term energy system planning to improve resilience under uncertainty, supporting the aims of the United Nations Sustainable Development Goals 7 and 11.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Scenarios for wind capacity deployment in Colombia by 2050: A perspective from system dynamics modeling Optimizing the use of limited amounts of hydrogen in existing combined heat and power plants Comprehensive and open model structure for the design of future energy systems with sector coupling Strengthening energy system resilience planning under uncertainty by minimizing regret The political economy of mini-grid electricity development and innovation in Kenya
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1