马尔可夫动力学中的统计不确定性原理

IF 3 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY Annals of Physics Pub Date : 2024-08-29 DOI:10.1016/j.aop.2024.169780
{"title":"马尔可夫动力学中的统计不确定性原理","authors":"","doi":"10.1016/j.aop.2024.169780","DOIUrl":null,"url":null,"abstract":"<div><p>A reciprocality between the statistical variance of observables of a thermodynamic state and that of their conjugate variables, as entropic forces, originates from the thermodynamic conjugacy with respect to an entropy function. This thermodynamic uncertainty principle in equilibrium can be derived from the Maximum Entropy principle and is independent upon underlying mechanistic details. We present, based on the Maximum Caliber principle as the dynamic generalization of Maximum Entropy, the formalism of the uncertainty principle in kinetics in time homogeneous Markov processes between transitional observables and their conjugate path entropic forces. A stochastic biophysical model for molecular motors is used as an illustrating example. The present work generalizes the phenomenological thermodynamics of uncertainties/fluctuations and is applicable to data <em>ad infinitum</em>.</p></div>","PeriodicalId":8249,"journal":{"name":"Annals of Physics","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistical uncertainty principle in Markov kinetics\",\"authors\":\"\",\"doi\":\"10.1016/j.aop.2024.169780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A reciprocality between the statistical variance of observables of a thermodynamic state and that of their conjugate variables, as entropic forces, originates from the thermodynamic conjugacy with respect to an entropy function. This thermodynamic uncertainty principle in equilibrium can be derived from the Maximum Entropy principle and is independent upon underlying mechanistic details. We present, based on the Maximum Caliber principle as the dynamic generalization of Maximum Entropy, the formalism of the uncertainty principle in kinetics in time homogeneous Markov processes between transitional observables and their conjugate path entropic forces. A stochastic biophysical model for molecular motors is used as an illustrating example. The present work generalizes the phenomenological thermodynamics of uncertainties/fluctuations and is applicable to data <em>ad infinitum</em>.</p></div>\",\"PeriodicalId\":8249,\"journal\":{\"name\":\"Annals of Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0003491624001878\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003491624001878","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

热力学状态观测变量的统计方差与其共轭变量的统计方差(作为熵力)之间的互易性,源于熵函数的热力学共轭性。这种平衡状态下的热力学不确定性原理可以从最大熵原理中推导出来,并且与基本的力学细节无关。作为最大熵原理的动态概括,我们以最大口径原理为基础,介绍了在过渡观测变量及其共轭路径熵力之间的时间均质马尔可夫过程中动力学不确定性原理的形式主义。以分子马达的随机生物物理模型为例进行说明。本研究对不确定性/波动的现象学热力学进行了概括,并适用于无限的数据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Statistical uncertainty principle in Markov kinetics

A reciprocality between the statistical variance of observables of a thermodynamic state and that of their conjugate variables, as entropic forces, originates from the thermodynamic conjugacy with respect to an entropy function. This thermodynamic uncertainty principle in equilibrium can be derived from the Maximum Entropy principle and is independent upon underlying mechanistic details. We present, based on the Maximum Caliber principle as the dynamic generalization of Maximum Entropy, the formalism of the uncertainty principle in kinetics in time homogeneous Markov processes between transitional observables and their conjugate path entropic forces. A stochastic biophysical model for molecular motors is used as an illustrating example. The present work generalizes the phenomenological thermodynamics of uncertainties/fluctuations and is applicable to data ad infinitum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Physics
Annals of Physics 物理-物理:综合
CiteScore
5.30
自引率
3.30%
发文量
211
审稿时长
47 days
期刊介绍: Annals of Physics presents original work in all areas of basic theoretic physics research. Ideas are developed and fully explored, and thorough treatment is given to first principles and ultimate applications. Annals of Physics emphasizes clarity and intelligibility in the articles it publishes, thus making them as accessible as possible. Readers familiar with recent developments in the field are provided with sufficient detail and background to follow the arguments and understand their significance. The Editors of the journal cover all fields of theoretical physics. Articles published in the journal are typically longer than 20 pages.
期刊最新文献
Singular parametric oscillators from the one-parameter Darboux transformation of the classical harmonic oscillator Exactly solvable time-dependent oscillator family Cosmological singularity and power-law solutions in modified gravity Thermodynamics and quasinormal modes of the Dymnikova black hole in higher dimensions Linear and quadratic behaviors in a two-level laser
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1