Zeqian Jin , Zhi-Chun Li , Xia Yang , Jose Holguin-Veras , Chen Li
{"title":"大型公共卫生事件中不同收入乘客的公共交通模式选择行为","authors":"Zeqian Jin , Zhi-Chun Li , Xia Yang , Jose Holguin-Veras , Chen Li","doi":"10.1016/j.tranpol.2024.08.012","DOIUrl":null,"url":null,"abstract":"<div><p>Public transport ridership has been hit hard by the COVID-19 pandemic in many countries. Investigating passengers' public transport mode choice behavior during large-scale public health incidents can uncover the major influential factors and help propose policies and strategies to reduce the pandemic transmission and recover the public transport revenue. This study develops an integrated choice and latent variables (ICLV) model by income based on structural equation model to model passengers' public transport choice behavior during the normalized stage of the pandemic. The model considers passengers' socioeconomic attributes, travel attributes, and attitude-perception attributes, and can appropriately capture passengers' psychological latent attributes. Taking Beijing China as an example, we collect some revealed preference survey data online. The modeling results show that the risk perception as a mediator variable has a significant impact on mode preference. Moreover, the convenience of public transport has the largest influence on risk perception. These findings suggest that risk perception and the convenience of public transport play a major role in passengers' mode choice behavior. In addition, the impacts of the various influential factors on the public transport mode choices are significantly different across different income groups. Further, the ICLV model can achieve better performance and is superior to the traditional Multinomial Logit model. The modeling framework can help propose targeted and instructive strategies during the normalized stage of the pandemic by uncovering the major influential factors in passengers’ public transport mode choices, which is applicable to similar pandemics in the future.</p></div>","PeriodicalId":48378,"journal":{"name":"Transport Policy","volume":"157 ","pages":"Pages 140-154"},"PeriodicalIF":6.3000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Public transport mode choice behavior of different-income passengers during large-scale public health incidents\",\"authors\":\"Zeqian Jin , Zhi-Chun Li , Xia Yang , Jose Holguin-Veras , Chen Li\",\"doi\":\"10.1016/j.tranpol.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Public transport ridership has been hit hard by the COVID-19 pandemic in many countries. Investigating passengers' public transport mode choice behavior during large-scale public health incidents can uncover the major influential factors and help propose policies and strategies to reduce the pandemic transmission and recover the public transport revenue. This study develops an integrated choice and latent variables (ICLV) model by income based on structural equation model to model passengers' public transport choice behavior during the normalized stage of the pandemic. The model considers passengers' socioeconomic attributes, travel attributes, and attitude-perception attributes, and can appropriately capture passengers' psychological latent attributes. Taking Beijing China as an example, we collect some revealed preference survey data online. The modeling results show that the risk perception as a mediator variable has a significant impact on mode preference. Moreover, the convenience of public transport has the largest influence on risk perception. These findings suggest that risk perception and the convenience of public transport play a major role in passengers' mode choice behavior. In addition, the impacts of the various influential factors on the public transport mode choices are significantly different across different income groups. Further, the ICLV model can achieve better performance and is superior to the traditional Multinomial Logit model. The modeling framework can help propose targeted and instructive strategies during the normalized stage of the pandemic by uncovering the major influential factors in passengers’ public transport mode choices, which is applicable to similar pandemics in the future.</p></div>\",\"PeriodicalId\":48378,\"journal\":{\"name\":\"Transport Policy\",\"volume\":\"157 \",\"pages\":\"Pages 140-154\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport Policy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0967070X24002415\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECONOMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport Policy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0967070X24002415","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
Public transport mode choice behavior of different-income passengers during large-scale public health incidents
Public transport ridership has been hit hard by the COVID-19 pandemic in many countries. Investigating passengers' public transport mode choice behavior during large-scale public health incidents can uncover the major influential factors and help propose policies and strategies to reduce the pandemic transmission and recover the public transport revenue. This study develops an integrated choice and latent variables (ICLV) model by income based on structural equation model to model passengers' public transport choice behavior during the normalized stage of the pandemic. The model considers passengers' socioeconomic attributes, travel attributes, and attitude-perception attributes, and can appropriately capture passengers' psychological latent attributes. Taking Beijing China as an example, we collect some revealed preference survey data online. The modeling results show that the risk perception as a mediator variable has a significant impact on mode preference. Moreover, the convenience of public transport has the largest influence on risk perception. These findings suggest that risk perception and the convenience of public transport play a major role in passengers' mode choice behavior. In addition, the impacts of the various influential factors on the public transport mode choices are significantly different across different income groups. Further, the ICLV model can achieve better performance and is superior to the traditional Multinomial Logit model. The modeling framework can help propose targeted and instructive strategies during the normalized stage of the pandemic by uncovering the major influential factors in passengers’ public transport mode choices, which is applicable to similar pandemics in the future.
期刊介绍:
Transport Policy is an international journal aimed at bridging the gap between theory and practice in transport. Its subject areas reflect the concerns of policymakers in government, industry, voluntary organisations and the public at large, providing independent, original and rigorous analysis to understand how policy decisions have been taken, monitor their effects, and suggest how they may be improved. The journal treats the transport sector comprehensively, and in the context of other sectors including energy, housing, industry and planning. All modes are covered: land, sea and air; road and rail; public and private; motorised and non-motorised; passenger and freight.