基于 D-S 证据理论的跨媒体知识信息检索模型

Hongbo Li, Xin Li, Boning Liu, Kaiji Mao, Hemin Xu
{"title":"基于 D-S 证据理论的跨媒体知识信息检索模型","authors":"Hongbo Li,&nbsp;Xin Li,&nbsp;Boning Liu,&nbsp;Kaiji Mao,&nbsp;Hemin Xu","doi":"10.1016/j.sasc.2024.200138","DOIUrl":null,"url":null,"abstract":"<div><p>Cross media knowledge information retrieval provides strong support for information processing and utilization in the information society, but there are problems such as heterogeneity in cross media knowledge information. Therefore, a cross media knowledge information retrieval model using D-S evidence theory is proposed, which involves using approximate calculation methods to improve this theory for information fusion, reducing computational complexity, and using deep networks for fine-grained information retrieval to improve retrieval accuracy. The results showed that the improved theory enhanced computational efficiency by about 27.23 %. The memory usage was &lt;60 %, and the average accuracy of information fusion reached 93.14 %. It also exhibited high recall and low false alarm rates. The cross media knowledge information retrieval model proposed in the study achieved accuracy of 92.64 %, 96.49 %, and 97.46 % on the three datasets used in the experiment, respectively. The study provides an effective, computationally efficient, and highly accurate model for cross media knowledge information retrieval, which is expected to promote research and application in this field. The combination of improved D-S evidence theory and deep networks provides a powerful approach to solving the problem of cross media heterogeneous information retrieval, which has a positive promoting effect on the processing and utilization of information in the information society.</p></div>","PeriodicalId":101205,"journal":{"name":"Systems and Soft Computing","volume":"6 ","pages":"Article 200138"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277294192400067X/pdfft?md5=3417968fd73977f9527d2eddd456260f&pid=1-s2.0-S277294192400067X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Cross media knowledge information retrieval model based on D-S evidence theory\",\"authors\":\"Hongbo Li,&nbsp;Xin Li,&nbsp;Boning Liu,&nbsp;Kaiji Mao,&nbsp;Hemin Xu\",\"doi\":\"10.1016/j.sasc.2024.200138\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Cross media knowledge information retrieval provides strong support for information processing and utilization in the information society, but there are problems such as heterogeneity in cross media knowledge information. Therefore, a cross media knowledge information retrieval model using D-S evidence theory is proposed, which involves using approximate calculation methods to improve this theory for information fusion, reducing computational complexity, and using deep networks for fine-grained information retrieval to improve retrieval accuracy. The results showed that the improved theory enhanced computational efficiency by about 27.23 %. The memory usage was &lt;60 %, and the average accuracy of information fusion reached 93.14 %. It also exhibited high recall and low false alarm rates. The cross media knowledge information retrieval model proposed in the study achieved accuracy of 92.64 %, 96.49 %, and 97.46 % on the three datasets used in the experiment, respectively. The study provides an effective, computationally efficient, and highly accurate model for cross media knowledge information retrieval, which is expected to promote research and application in this field. The combination of improved D-S evidence theory and deep networks provides a powerful approach to solving the problem of cross media heterogeneous information retrieval, which has a positive promoting effect on the processing and utilization of information in the information society.</p></div>\",\"PeriodicalId\":101205,\"journal\":{\"name\":\"Systems and Soft Computing\",\"volume\":\"6 \",\"pages\":\"Article 200138\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S277294192400067X/pdfft?md5=3417968fd73977f9527d2eddd456260f&pid=1-s2.0-S277294192400067X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems and Soft Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S277294192400067X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems and Soft Computing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277294192400067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

跨媒体知识信息检索为信息社会的信息处理和利用提供了有力支持,但也存在跨媒体知识信息异质性等问题。因此,提出了一种利用 D-S 证据理论的跨媒体知识信息检索模型,包括利用近似计算方法改进该理论进行信息融合,降低计算复杂度,利用深度网络进行细粒度信息检索,提高检索精度。结果表明,改进后的理论提高了约 27.23 % 的计算效率。内存使用率为 60%,信息融合的平均准确率达到 93.14%。它还表现出高召回率和低误报率。研究中提出的跨媒体知识信息检索模型在实验中使用的三个数据集上分别达到了 92.64 %、96.49 % 和 97.46 % 的准确率。该研究为跨媒体知识信息检索提供了一个有效、计算效率高、准确率高的模型,有望推动该领域的研究和应用。改进的D-S证据理论与深度网络的结合为解决跨媒体异构信息检索问题提供了一种有力的方法,对信息社会的信息处理和利用具有积极的促进作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Cross media knowledge information retrieval model based on D-S evidence theory

Cross media knowledge information retrieval provides strong support for information processing and utilization in the information society, but there are problems such as heterogeneity in cross media knowledge information. Therefore, a cross media knowledge information retrieval model using D-S evidence theory is proposed, which involves using approximate calculation methods to improve this theory for information fusion, reducing computational complexity, and using deep networks for fine-grained information retrieval to improve retrieval accuracy. The results showed that the improved theory enhanced computational efficiency by about 27.23 %. The memory usage was <60 %, and the average accuracy of information fusion reached 93.14 %. It also exhibited high recall and low false alarm rates. The cross media knowledge information retrieval model proposed in the study achieved accuracy of 92.64 %, 96.49 %, and 97.46 % on the three datasets used in the experiment, respectively. The study provides an effective, computationally efficient, and highly accurate model for cross media knowledge information retrieval, which is expected to promote research and application in this field. The combination of improved D-S evidence theory and deep networks provides a powerful approach to solving the problem of cross media heterogeneous information retrieval, which has a positive promoting effect on the processing and utilization of information in the information society.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
0.00%
发文量
0
期刊最新文献
Application of an intelligent English text classification model with improved KNN algorithm in the context of big data in libraries Analyzing the quality evaluation of college English teaching based on probabilistic linguistic multiple-attribute group decision-making Interior design assistant algorithm based on indoor scene analysis Research and application of visual synchronous positioning and mapping technology assisted by ultra wideband positioning technology Sentiment analysis of movie reviews: A flask application using CNN with RoBERTa embeddings
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1