Fatima Moussaoui , Faiçal El Ouadrhiri , Ebraheem-Abdu Musad Saleh , Soukaina El Bourachdi , Raed H. Althomali , Asmaa F. Kassem , Abderrazzak Adachi , Kakul Husain , Ismail Hassan , Amal Lahkimi
{"title":"提高生物废弃物的水炭产量和特性:将响应面方法与机器学习相结合,实现有机污染物修复","authors":"Fatima Moussaoui , Faiçal El Ouadrhiri , Ebraheem-Abdu Musad Saleh , Soukaina El Bourachdi , Raed H. Althomali , Asmaa F. Kassem , Abderrazzak Adachi , Kakul Husain , Ismail Hassan , Amal Lahkimi","doi":"10.1016/j.jscs.2024.101920","DOIUrl":null,"url":null,"abstract":"<div><p>The valorization of biogenic waste by hydrothermal carbonization is widely discussed in research. However, to our knowledge, no study has combined almond shells and olive pomace to synthesize a solid carbon material. The purpose of this study is to enhance the hydrochar process from AS and OP using RSM methodology and machine learning models: ANN, SVM and XG-Boost. Subsequently, a study was carried out on the removal of organic pollutants by the synthesized material. The optimum Co-HTC operating conditions obtained at 180 C, 90 min with acid catalyst corresponding to 71.51 % and 87.13 % for mass yield and carbon retention rate respectively according to RSM-CCD. The comparison between RSM-CCD and ML in terms of prediction concludes that RSM remains more efficient in terms of planning and optimization. However, ANN is more suitable for modeling and predicting mass yields and carbon retention rates. Hydrochar’s physicochemical properties were evaluated by the use of spectroscopic methods like FTIR, SEM, XRD, and CHNO. To conclude, we studied the performance of HCop in methylene blue adsorption, varying the following parameters: pH, contact time, initial dye concentration, adsorbent dose and temperature. In addition, kinetic and isothermal models were studied to describe the dominant mechanisms in the MB adsorption process. The MB maximal adsorption using HCop obtained at pH 9, with an initial dye concentration of 100 mg. L<sup>−1</sup>, 40-min contact time, 0.1 g/L adsorbent dose, and a temperature between 25 and 30 °C. In conclusion, these results provide important information on the use of Co-HTC to convert biogenic wastes into high-performance carbon materials for the appropriate removal of organic pollutants. More studies are needed to use the material in other fields of application.</p></div>","PeriodicalId":16974,"journal":{"name":"Journal of Saudi Chemical Society","volume":"28 5","pages":"Article 101920"},"PeriodicalIF":5.8000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319610324001157/pdfft?md5=01a75a14fc4645646ced27d92635eb45&pid=1-s2.0-S1319610324001157-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing hydrochar production and proprieties from biogenic waste: Merging response surface methodology and machine learning for organic pollutant remediation\",\"authors\":\"Fatima Moussaoui , Faiçal El Ouadrhiri , Ebraheem-Abdu Musad Saleh , Soukaina El Bourachdi , Raed H. Althomali , Asmaa F. Kassem , Abderrazzak Adachi , Kakul Husain , Ismail Hassan , Amal Lahkimi\",\"doi\":\"10.1016/j.jscs.2024.101920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The valorization of biogenic waste by hydrothermal carbonization is widely discussed in research. However, to our knowledge, no study has combined almond shells and olive pomace to synthesize a solid carbon material. The purpose of this study is to enhance the hydrochar process from AS and OP using RSM methodology and machine learning models: ANN, SVM and XG-Boost. Subsequently, a study was carried out on the removal of organic pollutants by the synthesized material. The optimum Co-HTC operating conditions obtained at 180 C, 90 min with acid catalyst corresponding to 71.51 % and 87.13 % for mass yield and carbon retention rate respectively according to RSM-CCD. The comparison between RSM-CCD and ML in terms of prediction concludes that RSM remains more efficient in terms of planning and optimization. However, ANN is more suitable for modeling and predicting mass yields and carbon retention rates. Hydrochar’s physicochemical properties were evaluated by the use of spectroscopic methods like FTIR, SEM, XRD, and CHNO. To conclude, we studied the performance of HCop in methylene blue adsorption, varying the following parameters: pH, contact time, initial dye concentration, adsorbent dose and temperature. In addition, kinetic and isothermal models were studied to describe the dominant mechanisms in the MB adsorption process. The MB maximal adsorption using HCop obtained at pH 9, with an initial dye concentration of 100 mg. L<sup>−1</sup>, 40-min contact time, 0.1 g/L adsorbent dose, and a temperature between 25 and 30 °C. In conclusion, these results provide important information on the use of Co-HTC to convert biogenic wastes into high-performance carbon materials for the appropriate removal of organic pollutants. More studies are needed to use the material in other fields of application.</p></div>\",\"PeriodicalId\":16974,\"journal\":{\"name\":\"Journal of Saudi Chemical Society\",\"volume\":\"28 5\",\"pages\":\"Article 101920\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319610324001157/pdfft?md5=01a75a14fc4645646ced27d92635eb45&pid=1-s2.0-S1319610324001157-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Saudi Chemical Society\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319610324001157\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Saudi Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319610324001157","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing hydrochar production and proprieties from biogenic waste: Merging response surface methodology and machine learning for organic pollutant remediation
The valorization of biogenic waste by hydrothermal carbonization is widely discussed in research. However, to our knowledge, no study has combined almond shells and olive pomace to synthesize a solid carbon material. The purpose of this study is to enhance the hydrochar process from AS and OP using RSM methodology and machine learning models: ANN, SVM and XG-Boost. Subsequently, a study was carried out on the removal of organic pollutants by the synthesized material. The optimum Co-HTC operating conditions obtained at 180 C, 90 min with acid catalyst corresponding to 71.51 % and 87.13 % for mass yield and carbon retention rate respectively according to RSM-CCD. The comparison between RSM-CCD and ML in terms of prediction concludes that RSM remains more efficient in terms of planning and optimization. However, ANN is more suitable for modeling and predicting mass yields and carbon retention rates. Hydrochar’s physicochemical properties were evaluated by the use of spectroscopic methods like FTIR, SEM, XRD, and CHNO. To conclude, we studied the performance of HCop in methylene blue adsorption, varying the following parameters: pH, contact time, initial dye concentration, adsorbent dose and temperature. In addition, kinetic and isothermal models were studied to describe the dominant mechanisms in the MB adsorption process. The MB maximal adsorption using HCop obtained at pH 9, with an initial dye concentration of 100 mg. L−1, 40-min contact time, 0.1 g/L adsorbent dose, and a temperature between 25 and 30 °C. In conclusion, these results provide important information on the use of Co-HTC to convert biogenic wastes into high-performance carbon materials for the appropriate removal of organic pollutants. More studies are needed to use the material in other fields of application.
期刊介绍:
Journal of Saudi Chemical Society is an English language, peer-reviewed scholarly publication in the area of chemistry. Journal of Saudi Chemical Society publishes original papers, reviews and short reports on, but not limited to:
•Inorganic chemistry
•Physical chemistry
•Organic chemistry
•Analytical chemistry
Journal of Saudi Chemical Society is the official publication of the Saudi Chemical Society and is published by King Saud University in collaboration with Elsevier and is edited by an international group of eminent researchers.