使用生成模型聆听

IF 2.8 1区 心理学 Q1 PSYCHOLOGY, EXPERIMENTAL Cognition Pub Date : 2024-08-30 DOI:10.1016/j.cognition.2024.105874
Maddie Cusimano , Luke B. Hewitt , Josh H. McDermott
{"title":"使用生成模型聆听","authors":"Maddie Cusimano ,&nbsp;Luke B. Hewitt ,&nbsp;Josh H. McDermott","doi":"10.1016/j.cognition.2024.105874","DOIUrl":null,"url":null,"abstract":"<div><p>Perception has long been envisioned to use an internal model of the world to explain the causes of sensory signals. However, such accounts have historically not been testable, typically requiring intractable search through the space of possible explanations. Using auditory scenes as a case study, we leveraged contemporary computational tools to infer explanations of sounds in a candidate internal generative model of the auditory world (ecologically inspired audio synthesizers). Model inferences accounted for many classic illusions. Unlike traditional accounts of auditory illusions, the model is applicable to any sound, and exhibited human-like perceptual organization for real-world sound mixtures. The combination of stimulus-computability and interpretable model structure enabled ‘rich falsification’, revealing additional assumptions about sound generation needed to account for perception. The results show how generative models can account for the perception of both classic illusions and everyday sensory signals, and illustrate the opportunities and challenges involved in incorporating them into theories of perception.</p></div>","PeriodicalId":48455,"journal":{"name":"Cognition","volume":"253 ","pages":"Article 105874"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010027724001604/pdfft?md5=12a6854cd3586854a262c85e80572130&pid=1-s2.0-S0010027724001604-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Listening with generative models\",\"authors\":\"Maddie Cusimano ,&nbsp;Luke B. Hewitt ,&nbsp;Josh H. McDermott\",\"doi\":\"10.1016/j.cognition.2024.105874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Perception has long been envisioned to use an internal model of the world to explain the causes of sensory signals. However, such accounts have historically not been testable, typically requiring intractable search through the space of possible explanations. Using auditory scenes as a case study, we leveraged contemporary computational tools to infer explanations of sounds in a candidate internal generative model of the auditory world (ecologically inspired audio synthesizers). Model inferences accounted for many classic illusions. Unlike traditional accounts of auditory illusions, the model is applicable to any sound, and exhibited human-like perceptual organization for real-world sound mixtures. The combination of stimulus-computability and interpretable model structure enabled ‘rich falsification’, revealing additional assumptions about sound generation needed to account for perception. The results show how generative models can account for the perception of both classic illusions and everyday sensory signals, and illustrate the opportunities and challenges involved in incorporating them into theories of perception.</p></div>\",\"PeriodicalId\":48455,\"journal\":{\"name\":\"Cognition\",\"volume\":\"253 \",\"pages\":\"Article 105874\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0010027724001604/pdfft?md5=12a6854cd3586854a262c85e80572130&pid=1-s2.0-S0010027724001604-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010027724001604\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010027724001604","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,人们一直设想知觉使用世界的内部模型来解释感觉信号的成因。然而,这种解释历来不具备可验证性,通常需要在可能的解释空间中进行艰难的搜索。以听觉场景为例,我们利用当代计算工具推断了听觉世界候选内部生成模型(受生态启发的音频合成器)中对声音的解释。模型推论解释了许多经典幻觉。与听觉幻觉的传统说法不同,该模型适用于任何声音,并对真实世界的声音混合物表现出类似人类的感知组织。刺激可计算性与可解释模型结构的结合实现了 "丰富的证伪",揭示了解释感知所需的关于声音生成的额外假设。研究结果表明了生成模型如何解释经典幻觉和日常感官信号的感知,并说明了将生成模型纳入感知理论的机遇和挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Listening with generative models

Perception has long been envisioned to use an internal model of the world to explain the causes of sensory signals. However, such accounts have historically not been testable, typically requiring intractable search through the space of possible explanations. Using auditory scenes as a case study, we leveraged contemporary computational tools to infer explanations of sounds in a candidate internal generative model of the auditory world (ecologically inspired audio synthesizers). Model inferences accounted for many classic illusions. Unlike traditional accounts of auditory illusions, the model is applicable to any sound, and exhibited human-like perceptual organization for real-world sound mixtures. The combination of stimulus-computability and interpretable model structure enabled ‘rich falsification’, revealing additional assumptions about sound generation needed to account for perception. The results show how generative models can account for the perception of both classic illusions and everyday sensory signals, and illustrate the opportunities and challenges involved in incorporating them into theories of perception.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cognition
Cognition PSYCHOLOGY, EXPERIMENTAL-
CiteScore
6.40
自引率
5.90%
发文量
283
期刊介绍: Cognition is an international journal that publishes theoretical and experimental papers on the study of the mind. It covers a wide variety of subjects concerning all the different aspects of cognition, ranging from biological and experimental studies to formal analysis. Contributions from the fields of psychology, neuroscience, linguistics, computer science, mathematics, ethology and philosophy are welcome in this journal provided that they have some bearing on the functioning of the mind. In addition, the journal serves as a forum for discussion of social and political aspects of cognitive science.
期刊最新文献
Morality on the road: Should machine drivers be more utilitarian than human drivers? Relative source credibility affects the continued influence effect: Evidence of rationality in the CIE. Decoding face identity: A reverse-correlation approach using deep learning How does color distribution learning affect goal-directed visuomotor behavior? Bias-free measure of distractor avoidance in visual search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1