Ahmed E. Abu EL-Maaty , Mahmoud A. Abdalla , Mohamed Essalhi , Mahmoud M. Abdelnaby , Morsi M. Mahmoud , Mohamed A. Habib , Mohamed Antar , Rached Ben-Mansour
{"title":"用于吸附冷却应用的金属有机框架(MOF-303)中的水吸附动力学","authors":"Ahmed E. Abu EL-Maaty , Mahmoud A. Abdalla , Mohamed Essalhi , Mahmoud M. Abdelnaby , Morsi M. Mahmoud , Mohamed A. Habib , Mohamed Antar , Rached Ben-Mansour","doi":"10.1016/j.ecmx.2024.100694","DOIUrl":null,"url":null,"abstract":"<div><p>Adsorption cooling systems (ACS) powered by low-temperature heat offer an energy-efficient and environmentally friendly alternative to traditional vapor-compression systems. The effectiveness of ACS is significantly influenced by the alignment of the adsorbent properties with the operating conditions of the cycle. Metal-Organic Frameworks (MOFs) are considered the next generation of water harvesting and ACS. Many MOFs are synthesized and tested for water harvesting systems, one of these MOFs is MOF-303 which was reported to have very rapid water sorption dynamics under atmospheric conditions. However, MOF-303 has never been tested under the same conditions as ACS (under vacuum). In this study, the isotherms and kinetics of water adsorption on MOF-303, as an efficient adsorbent of water vapor, is experimentally investigated for the ACS using the linear driving force model. The diffusion coefficients across a wide range of relative pressures under two different temperatures were estimated. The study compares the adsorption process of MOF-303 with traditional silica gel (SG) in the context of diffusion kinetics relevant to ACS. Based on the output and at a constant temperature of 25 °C and across all relative pressure ranges, MOF-303 exhibited an average increase of approximately eight times in diffusion kinetics compared to SG. Specifically, within the relative pressure range of 10–30 %, which is optimal for ACS, MOF-303 demonstrated a seven-fold increase in diffusion kinetics over SG. The diffusion values for SG display a clear upward trend with increasing temperature. In contrast, the diffusion values for MOF-303 are subject to fluctuations with temperature changes under investigation. Notably, the isotherm for MOF-303 shows an inflection point at relative pressures between 10–15 %, causing a significant reduction in diffusion at these specific relative pressures compared to other relative pressure values. The findings in this study highlight the potential use of MOF-303 as a highly efficient water adsorbent for the ACS which will enable scientists and engineers to develop sustainable low-grade energy systems.</p></div>","PeriodicalId":37131,"journal":{"name":"Energy Conversion and Management-X","volume":"24 ","pages":"Article 100694"},"PeriodicalIF":7.1000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590174524001727/pdfft?md5=d0ae5fd8d068980b97d669bebf48a12a&pid=1-s2.0-S2590174524001727-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Kinetics of Water Adsorption in Metal-Organic Framework(MOF-303) for Adsorption Cooling Application\",\"authors\":\"Ahmed E. Abu EL-Maaty , Mahmoud A. Abdalla , Mohamed Essalhi , Mahmoud M. Abdelnaby , Morsi M. Mahmoud , Mohamed A. Habib , Mohamed Antar , Rached Ben-Mansour\",\"doi\":\"10.1016/j.ecmx.2024.100694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Adsorption cooling systems (ACS) powered by low-temperature heat offer an energy-efficient and environmentally friendly alternative to traditional vapor-compression systems. The effectiveness of ACS is significantly influenced by the alignment of the adsorbent properties with the operating conditions of the cycle. Metal-Organic Frameworks (MOFs) are considered the next generation of water harvesting and ACS. Many MOFs are synthesized and tested for water harvesting systems, one of these MOFs is MOF-303 which was reported to have very rapid water sorption dynamics under atmospheric conditions. However, MOF-303 has never been tested under the same conditions as ACS (under vacuum). In this study, the isotherms and kinetics of water adsorption on MOF-303, as an efficient adsorbent of water vapor, is experimentally investigated for the ACS using the linear driving force model. The diffusion coefficients across a wide range of relative pressures under two different temperatures were estimated. The study compares the adsorption process of MOF-303 with traditional silica gel (SG) in the context of diffusion kinetics relevant to ACS. Based on the output and at a constant temperature of 25 °C and across all relative pressure ranges, MOF-303 exhibited an average increase of approximately eight times in diffusion kinetics compared to SG. Specifically, within the relative pressure range of 10–30 %, which is optimal for ACS, MOF-303 demonstrated a seven-fold increase in diffusion kinetics over SG. The diffusion values for SG display a clear upward trend with increasing temperature. In contrast, the diffusion values for MOF-303 are subject to fluctuations with temperature changes under investigation. Notably, the isotherm for MOF-303 shows an inflection point at relative pressures between 10–15 %, causing a significant reduction in diffusion at these specific relative pressures compared to other relative pressure values. The findings in this study highlight the potential use of MOF-303 as a highly efficient water adsorbent for the ACS which will enable scientists and engineers to develop sustainable low-grade energy systems.</p></div>\",\"PeriodicalId\":37131,\"journal\":{\"name\":\"Energy Conversion and Management-X\",\"volume\":\"24 \",\"pages\":\"Article 100694\"},\"PeriodicalIF\":7.1000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001727/pdfft?md5=d0ae5fd8d068980b97d669bebf48a12a&pid=1-s2.0-S2590174524001727-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Conversion and Management-X\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2590174524001727\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management-X","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590174524001727","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Kinetics of Water Adsorption in Metal-Organic Framework(MOF-303) for Adsorption Cooling Application
Adsorption cooling systems (ACS) powered by low-temperature heat offer an energy-efficient and environmentally friendly alternative to traditional vapor-compression systems. The effectiveness of ACS is significantly influenced by the alignment of the adsorbent properties with the operating conditions of the cycle. Metal-Organic Frameworks (MOFs) are considered the next generation of water harvesting and ACS. Many MOFs are synthesized and tested for water harvesting systems, one of these MOFs is MOF-303 which was reported to have very rapid water sorption dynamics under atmospheric conditions. However, MOF-303 has never been tested under the same conditions as ACS (under vacuum). In this study, the isotherms and kinetics of water adsorption on MOF-303, as an efficient adsorbent of water vapor, is experimentally investigated for the ACS using the linear driving force model. The diffusion coefficients across a wide range of relative pressures under two different temperatures were estimated. The study compares the adsorption process of MOF-303 with traditional silica gel (SG) in the context of diffusion kinetics relevant to ACS. Based on the output and at a constant temperature of 25 °C and across all relative pressure ranges, MOF-303 exhibited an average increase of approximately eight times in diffusion kinetics compared to SG. Specifically, within the relative pressure range of 10–30 %, which is optimal for ACS, MOF-303 demonstrated a seven-fold increase in diffusion kinetics over SG. The diffusion values for SG display a clear upward trend with increasing temperature. In contrast, the diffusion values for MOF-303 are subject to fluctuations with temperature changes under investigation. Notably, the isotherm for MOF-303 shows an inflection point at relative pressures between 10–15 %, causing a significant reduction in diffusion at these specific relative pressures compared to other relative pressure values. The findings in this study highlight the potential use of MOF-303 as a highly efficient water adsorbent for the ACS which will enable scientists and engineers to develop sustainable low-grade energy systems.
期刊介绍:
Energy Conversion and Management: X is the open access extension of the reputable journal Energy Conversion and Management, serving as a platform for interdisciplinary research on a wide array of critical energy subjects. The journal is dedicated to publishing original contributions and in-depth technical review articles that present groundbreaking research on topics spanning energy generation, utilization, conversion, storage, transmission, conservation, management, and sustainability.
The scope of Energy Conversion and Management: X encompasses various forms of energy, including mechanical, thermal, nuclear, chemical, electromagnetic, magnetic, and electric energy. It addresses all known energy resources, highlighting both conventional sources like fossil fuels and nuclear power, as well as renewable resources such as solar, biomass, hydro, wind, geothermal, and ocean energy.