以环保方式生产二氧化碳含量高的石油系统

{"title":"以环保方式生产二氧化碳含量高的石油系统","authors":"","doi":"10.1016/j.nxener.2024.100179","DOIUrl":null,"url":null,"abstract":"<div><p>Natural gas hydrates represents a huge source of energy. At the same time substantial leakages of natural gas from hydrates contributes significantly to climate changes. One of the most important reasons for these natural gas fluxes is leakage of seawater in to the hydrates from seafloor, through fracture systems. Hydrate dissociates if surrounding seawater is less than hydrate stability limit. Another interesting aspect of natural gas hydrates is the potential for safe CO<sub>2</sub> storage. These different aspects of hydrates in natural sediments put demands on thermodynamic models. In addition to accurate description of pressure temperature hydrate stability there also a need to describe hydrate dissociation in concentration gradients towards surrounding water or surrounding gas as two examples. In this work we present new experimental data and an extensive thermodynamic model for hydrate. In contrast to conventional thermodynamic models for hydrate the model is consistent since all thermodynamic properties are derived from the Gibbs free energy. In this work we examine mixtures of CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, N<sub>2</sub>, CO<sub>2</sub> from the China Sea and some synthetic mixtures, using this model. Maximum CO<sub>2</sub> content in these mixtures are 60 mol% and the rest is dominated by CH<sub>4</sub>. Agreement between experimental data and model calculations are generally good and average deviations are below 5.5% for all the systems and conditions examined. Another aspect of the model is the ability for incorporation of effects of mineral surfaces. Specifically it is illustrated that adsorption of water on rust dominates liquid water drop out from gas as compared to water dew-point. Production of natural gas with such high CO<sub>2</sub> content requires a strategy for CO<sub>2</sub> separation and storage. It is proposed that the CH<sub>4</sub> is separated from the C<sub>2</sub>H<sub>6</sub>, CO<sub>2</sub> and N<sub>2</sub> and cracked to H<sub>2</sub> and CO<sub>2</sub> using steam. Thermodynamic analysis indicates a significant potential for safe CO<sub>2</sub> storage in natural gas hydrate and H<sub>2</sub> as the only export product.</p></div>","PeriodicalId":100957,"journal":{"name":"Next Energy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949821X2400084X/pdfft?md5=266f79a863d4e1ecd73da3f5956a0086&pid=1-s2.0-S2949821X2400084X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Environmentally friendly production of petroleum systems with high CO2 content\",\"authors\":\"\",\"doi\":\"10.1016/j.nxener.2024.100179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Natural gas hydrates represents a huge source of energy. At the same time substantial leakages of natural gas from hydrates contributes significantly to climate changes. One of the most important reasons for these natural gas fluxes is leakage of seawater in to the hydrates from seafloor, through fracture systems. Hydrate dissociates if surrounding seawater is less than hydrate stability limit. Another interesting aspect of natural gas hydrates is the potential for safe CO<sub>2</sub> storage. These different aspects of hydrates in natural sediments put demands on thermodynamic models. In addition to accurate description of pressure temperature hydrate stability there also a need to describe hydrate dissociation in concentration gradients towards surrounding water or surrounding gas as two examples. In this work we present new experimental data and an extensive thermodynamic model for hydrate. In contrast to conventional thermodynamic models for hydrate the model is consistent since all thermodynamic properties are derived from the Gibbs free energy. In this work we examine mixtures of CH<sub>4</sub>, C<sub>2</sub>H<sub>6</sub>, N<sub>2</sub>, CO<sub>2</sub> from the China Sea and some synthetic mixtures, using this model. Maximum CO<sub>2</sub> content in these mixtures are 60 mol% and the rest is dominated by CH<sub>4</sub>. Agreement between experimental data and model calculations are generally good and average deviations are below 5.5% for all the systems and conditions examined. Another aspect of the model is the ability for incorporation of effects of mineral surfaces. Specifically it is illustrated that adsorption of water on rust dominates liquid water drop out from gas as compared to water dew-point. Production of natural gas with such high CO<sub>2</sub> content requires a strategy for CO<sub>2</sub> separation and storage. It is proposed that the CH<sub>4</sub> is separated from the C<sub>2</sub>H<sub>6</sub>, CO<sub>2</sub> and N<sub>2</sub> and cracked to H<sub>2</sub> and CO<sub>2</sub> using steam. Thermodynamic analysis indicates a significant potential for safe CO<sub>2</sub> storage in natural gas hydrate and H<sub>2</sub> as the only export product.</p></div>\",\"PeriodicalId\":100957,\"journal\":{\"name\":\"Next Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949821X2400084X/pdfft?md5=266f79a863d4e1ecd73da3f5956a0086&pid=1-s2.0-S2949821X2400084X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Next Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949821X2400084X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Next Energy","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949821X2400084X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

天然气水合物是一种巨大的能源。与此同时,水合物中天然气的大量泄漏也在很大程度上导致了气候变化。造成这些天然气流量的最重要原因之一是海水通过裂缝系统从海底渗入水合物。如果周围的海水低于水合物的稳定极限,水合物就会解离。天然气水合物的另一个有趣方面是其安全储存二氧化碳的潜力。天然沉积物中水合物的这些不同方面对热力学模型提出了要求。除了准确描述压力温度下的水合物稳定性,还需要描述水合物在向周围水或周围气体的浓度梯度中的解离情况。在这项工作中,我们提出了新的实验数据和广泛的水合物热力学模型。与传统的水合物热力学模型相比,该模型是一致的,因为所有热力学性质都是从吉布斯自由能推导出来的。在这项工作中,我们使用该模型研究了来自中国海的 CH4、C2H6、N2、CO2 混合物和一些合成混合物。在这些混合物中,二氧化碳的最大含量为 60 摩尔%,其余主要是 CH4。实验数据与模型计算结果的一致性总体良好,在所有考察的系统和条件下,平均偏差都低于 5.5%。该模型的另一个特点是能够纳入矿物表面的影响。具体来说,与水露点相比,水在铁锈上的吸附作用会使液态水从天然气中滴出。生产二氧化碳含量如此之高的天然气需要一种二氧化碳分离和储存策略。建议将 CH4 与 C2H6、CO2 和 N2 分离,并利用蒸汽裂解为 H2 和 CO2。热力学分析表明,在天然气水合物中安全储存二氧化碳和将 H2 作为唯一出口产品的潜力巨大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environmentally friendly production of petroleum systems with high CO2 content

Natural gas hydrates represents a huge source of energy. At the same time substantial leakages of natural gas from hydrates contributes significantly to climate changes. One of the most important reasons for these natural gas fluxes is leakage of seawater in to the hydrates from seafloor, through fracture systems. Hydrate dissociates if surrounding seawater is less than hydrate stability limit. Another interesting aspect of natural gas hydrates is the potential for safe CO2 storage. These different aspects of hydrates in natural sediments put demands on thermodynamic models. In addition to accurate description of pressure temperature hydrate stability there also a need to describe hydrate dissociation in concentration gradients towards surrounding water or surrounding gas as two examples. In this work we present new experimental data and an extensive thermodynamic model for hydrate. In contrast to conventional thermodynamic models for hydrate the model is consistent since all thermodynamic properties are derived from the Gibbs free energy. In this work we examine mixtures of CH4, C2H6, N2, CO2 from the China Sea and some synthetic mixtures, using this model. Maximum CO2 content in these mixtures are 60 mol% and the rest is dominated by CH4. Agreement between experimental data and model calculations are generally good and average deviations are below 5.5% for all the systems and conditions examined. Another aspect of the model is the ability for incorporation of effects of mineral surfaces. Specifically it is illustrated that adsorption of water on rust dominates liquid water drop out from gas as compared to water dew-point. Production of natural gas with such high CO2 content requires a strategy for CO2 separation and storage. It is proposed that the CH4 is separated from the C2H6, CO2 and N2 and cracked to H2 and CO2 using steam. Thermodynamic analysis indicates a significant potential for safe CO2 storage in natural gas hydrate and H2 as the only export product.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dry reforming of methane and interaction between NiO and CeZrPrOx oxide in different crystallographic plane Hierarchical control of inverter-based microgrid with droop approach and proportional-integral controller Assessment of Iron(III) chloride as a catalyst for the production of hydrogen from the supercritical water gasification of microalgae In situ growth of 3D nano-array architecture Bi2S3/nickel foam assembled by interwoven nanosheets electrodes for hybrid supercapacitor Reducing resistances of all-solid-state polymer batteries via hot-press activation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1