生物力学在肿瘤表观遗传学研究中的应用

{"title":"生物力学在肿瘤表观遗传学研究中的应用","authors":"","doi":"10.1016/j.mbm.2024.100093","DOIUrl":null,"url":null,"abstract":"<div><p>The field of cancer research is increasingly recognizing the complex interplay between biomechanics and tumor epigenetics. Biomechanics plays a significant role in the occurrence, development, and metastasis of cancer and may exert influence by impacting the epigenetic modifications of tumors. In this review, we investigate a spectrum of biomechanical tools, including computational models, measurement instruments, and in vitro simulations. These tools not only assist in deciphering the mechanisms behind these epigenetic changes but also provide novel methods for characterizing tumors, which are significant for diagnosis and treatment. Finally, we discuss the potential of new therapies that target the biomechanical properties of the tumor microenvironment. There is hope that by altering factors such as the stiffness of the extracellular matrix or interfering with mechano-sensing pathways, we can halt tumor progression through epigenetic mechanisms. We emphasize the necessity for multidisciplinary efforts to integrate biomechanics with tumor epigenetics more comprehensively. Such collaboration is anticipated to advance therapeutic strategies and enhance our understanding of cancer biology, signaling the dawn of a new era in cancer treatment and research.</p></div>","PeriodicalId":100900,"journal":{"name":"Mechanobiology in Medicine","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949907024000561/pdfft?md5=2b0b12971d7ff6eb0193e7d386c7f22d&pid=1-s2.0-S2949907024000561-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of biomechanics in tumor epigenetic research\",\"authors\":\"\",\"doi\":\"10.1016/j.mbm.2024.100093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The field of cancer research is increasingly recognizing the complex interplay between biomechanics and tumor epigenetics. Biomechanics plays a significant role in the occurrence, development, and metastasis of cancer and may exert influence by impacting the epigenetic modifications of tumors. In this review, we investigate a spectrum of biomechanical tools, including computational models, measurement instruments, and in vitro simulations. These tools not only assist in deciphering the mechanisms behind these epigenetic changes but also provide novel methods for characterizing tumors, which are significant for diagnosis and treatment. Finally, we discuss the potential of new therapies that target the biomechanical properties of the tumor microenvironment. There is hope that by altering factors such as the stiffness of the extracellular matrix or interfering with mechano-sensing pathways, we can halt tumor progression through epigenetic mechanisms. We emphasize the necessity for multidisciplinary efforts to integrate biomechanics with tumor epigenetics more comprehensively. Such collaboration is anticipated to advance therapeutic strategies and enhance our understanding of cancer biology, signaling the dawn of a new era in cancer treatment and research.</p></div>\",\"PeriodicalId\":100900,\"journal\":{\"name\":\"Mechanobiology in Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000561/pdfft?md5=2b0b12971d7ff6eb0193e7d386c7f22d&pid=1-s2.0-S2949907024000561-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanobiology in Medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949907024000561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanobiology in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949907024000561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

癌症研究领域日益认识到生物力学与肿瘤表观遗传学之间复杂的相互作用。生物力学在癌症的发生、发展和转移过程中发挥着重要作用,并可能通过影响肿瘤的表观遗传学改变而产生影响。在这篇综述中,我们研究了一系列生物力学工具,包括计算模型、测量仪器和体外模拟。这些工具不仅有助于破译这些表观遗传学变化背后的机制,还提供了描述肿瘤特征的新方法,对诊断和治疗具有重要意义。最后,我们讨论了针对肿瘤微环境生物力学特性的新疗法的潜力。通过改变细胞外基质的硬度或干扰机械传感途径等因素,我们有望通过表观遗传机制阻止肿瘤的发展。我们强调有必要开展多学科合作,将生物力学与肿瘤表观遗传学更全面地结合起来。预计这种合作将推进治疗策略,增强我们对癌症生物学的理解,预示着癌症治疗和研究新时代的到来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of biomechanics in tumor epigenetic research

The field of cancer research is increasingly recognizing the complex interplay between biomechanics and tumor epigenetics. Biomechanics plays a significant role in the occurrence, development, and metastasis of cancer and may exert influence by impacting the epigenetic modifications of tumors. In this review, we investigate a spectrum of biomechanical tools, including computational models, measurement instruments, and in vitro simulations. These tools not only assist in deciphering the mechanisms behind these epigenetic changes but also provide novel methods for characterizing tumors, which are significant for diagnosis and treatment. Finally, we discuss the potential of new therapies that target the biomechanical properties of the tumor microenvironment. There is hope that by altering factors such as the stiffness of the extracellular matrix or interfering with mechano-sensing pathways, we can halt tumor progression through epigenetic mechanisms. We emphasize the necessity for multidisciplinary efforts to integrate biomechanics with tumor epigenetics more comprehensively. Such collaboration is anticipated to advance therapeutic strategies and enhance our understanding of cancer biology, signaling the dawn of a new era in cancer treatment and research.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strain and hyaluronic acid interact to regulate ovarian cancer cell proliferation, migration, and drug resistance In vivo analysis of hybrid hydrogels containing dual growth factor combinations, and skeletal stem cells under mechanical stimulation for bone repair Low-magnitude high-frequency vibration reduces prostate cancer growth and extravasation in vitro Application of biomechanics in tumor epigenetic research YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1