Tiago J. Ferreira , Thiago O. Carvalho , Joana Pais , Laura M. Esteves , Ludmila P.C. Silva , Patrícia M. Reis , José M.S.S. Esperança , Isabel A.A.C. Esteves
{"title":"将一羧酸盐和二羧酸盐基离子液体浸渍到 ZIF-8 中,提高二氧化碳的选择性,用于燃烧后分离","authors":"Tiago J. Ferreira , Thiago O. Carvalho , Joana Pais , Laura M. Esteves , Ludmila P.C. Silva , Patrícia M. Reis , José M.S.S. Esperança , Isabel A.A.C. Esteves","doi":"10.1016/j.ccst.2024.100282","DOIUrl":null,"url":null,"abstract":"<div><p>Post-combustion carbon dioxide (CO<sub>2</sub>) capture/separation is considered one of the main ways to minimize the impact of global warming caused by this greenhouse gas. This work used eight mono- and dicarboxylate-based ionic liquids (ILs) to impregnate metal-organic framework (MOF) ZIF-8. This anionic effect was studied for these mostly unreported IL@MOF composites to determine its impact on gas sorption and selectivity performance. Characterization results confirmed IL impregnation into the structure of ZIF-8, along with the conservation of microporosity and crystallinity in composites. Sorption-desorption equilibrium measurements were performed, and CO<sub>2</sub> and nitrogen (N<sub>2</sub>) isotherms were obtained at 303 K for ZIF-8 and IL@ZIF-8 composites. At 0.15 bar, the dicarboxylate-based composite [C<sub>2</sub>MIM]<sub>2</sub>[Glu]@ZIF-8 showed the highest CO<sub>2</sub> gas sorption, showing 50 % more sorption capacity than the best monocarboxylate-base composites at this pressure. Dicarboxylate-based composites also showed remarkable N<sub>2</sub> sorption in the low-pressure range. The ideal CO<sub>2</sub>/N<sub>2</sub> selectivity for a typical post-combustion composition was calculated, and a trend regarding the anionic carbon chain size was observed. The composite [C<sub>2</sub>MIM][Cap]@ZIF-8 showed nearly five times more selectivity than the pristine ZIF-8 at 1 bar of total pressure. Dicarboxylate-based composites, given their low-pressure high N<sub>2</sub> sorption capacity, were not as selective as their respective monocarboxylate-based IL@ZIF-8 materials with the same carbon chain size.</p></div>","PeriodicalId":9387,"journal":{"name":"Carbon Capture Science & Technology","volume":"13 ","pages":"Article 100282"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772656824000940/pdfft?md5=51df7ab5a594eddd1a6cbd534fe44652&pid=1-s2.0-S2772656824000940-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Boosting CO2 selectivity by mono- and dicarboxylate-based ionic liquids impregnation into ZIF-8 for post-combustion separation\",\"authors\":\"Tiago J. Ferreira , Thiago O. Carvalho , Joana Pais , Laura M. Esteves , Ludmila P.C. Silva , Patrícia M. Reis , José M.S.S. Esperança , Isabel A.A.C. Esteves\",\"doi\":\"10.1016/j.ccst.2024.100282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Post-combustion carbon dioxide (CO<sub>2</sub>) capture/separation is considered one of the main ways to minimize the impact of global warming caused by this greenhouse gas. This work used eight mono- and dicarboxylate-based ionic liquids (ILs) to impregnate metal-organic framework (MOF) ZIF-8. This anionic effect was studied for these mostly unreported IL@MOF composites to determine its impact on gas sorption and selectivity performance. Characterization results confirmed IL impregnation into the structure of ZIF-8, along with the conservation of microporosity and crystallinity in composites. Sorption-desorption equilibrium measurements were performed, and CO<sub>2</sub> and nitrogen (N<sub>2</sub>) isotherms were obtained at 303 K for ZIF-8 and IL@ZIF-8 composites. At 0.15 bar, the dicarboxylate-based composite [C<sub>2</sub>MIM]<sub>2</sub>[Glu]@ZIF-8 showed the highest CO<sub>2</sub> gas sorption, showing 50 % more sorption capacity than the best monocarboxylate-base composites at this pressure. Dicarboxylate-based composites also showed remarkable N<sub>2</sub> sorption in the low-pressure range. The ideal CO<sub>2</sub>/N<sub>2</sub> selectivity for a typical post-combustion composition was calculated, and a trend regarding the anionic carbon chain size was observed. The composite [C<sub>2</sub>MIM][Cap]@ZIF-8 showed nearly five times more selectivity than the pristine ZIF-8 at 1 bar of total pressure. Dicarboxylate-based composites, given their low-pressure high N<sub>2</sub> sorption capacity, were not as selective as their respective monocarboxylate-based IL@ZIF-8 materials with the same carbon chain size.</p></div>\",\"PeriodicalId\":9387,\"journal\":{\"name\":\"Carbon Capture Science & Technology\",\"volume\":\"13 \",\"pages\":\"Article 100282\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000940/pdfft?md5=51df7ab5a594eddd1a6cbd534fe44652&pid=1-s2.0-S2772656824000940-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Carbon Capture Science & Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772656824000940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon Capture Science & Technology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772656824000940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Boosting CO2 selectivity by mono- and dicarboxylate-based ionic liquids impregnation into ZIF-8 for post-combustion separation
Post-combustion carbon dioxide (CO2) capture/separation is considered one of the main ways to minimize the impact of global warming caused by this greenhouse gas. This work used eight mono- and dicarboxylate-based ionic liquids (ILs) to impregnate metal-organic framework (MOF) ZIF-8. This anionic effect was studied for these mostly unreported IL@MOF composites to determine its impact on gas sorption and selectivity performance. Characterization results confirmed IL impregnation into the structure of ZIF-8, along with the conservation of microporosity and crystallinity in composites. Sorption-desorption equilibrium measurements were performed, and CO2 and nitrogen (N2) isotherms were obtained at 303 K for ZIF-8 and IL@ZIF-8 composites. At 0.15 bar, the dicarboxylate-based composite [C2MIM]2[Glu]@ZIF-8 showed the highest CO2 gas sorption, showing 50 % more sorption capacity than the best monocarboxylate-base composites at this pressure. Dicarboxylate-based composites also showed remarkable N2 sorption in the low-pressure range. The ideal CO2/N2 selectivity for a typical post-combustion composition was calculated, and a trend regarding the anionic carbon chain size was observed. The composite [C2MIM][Cap]@ZIF-8 showed nearly five times more selectivity than the pristine ZIF-8 at 1 bar of total pressure. Dicarboxylate-based composites, given their low-pressure high N2 sorption capacity, were not as selective as their respective monocarboxylate-based IL@ZIF-8 materials with the same carbon chain size.