计算电磁学遇上自旋微ubits:控制量子传感和计算中的噪声效应

IF 1.8 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Journal on Multiscale and Multiphysics Computational Techniques Pub Date : 2024-08-06 DOI:10.1109/JMMCT.2024.3439531
Wenbo Sun;Sathwik Bharadwaj;Runwei Zhou;Dan Jiao;Zubin Jacob
{"title":"计算电磁学遇上自旋微ubits:控制量子传感和计算中的噪声效应","authors":"Wenbo Sun;Sathwik Bharadwaj;Runwei Zhou;Dan Jiao;Zubin Jacob","doi":"10.1109/JMMCT.2024.3439531","DOIUrl":null,"url":null,"abstract":"Solid-state spin qubits have emerged as promising platforms for quantum information. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near lossy material components in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum devices, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a quantum computational electromagnetics framework to control low-frequency magnetic fluctuation noise and enhance spin qubit device performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. Furthermore, we demonstrate the application of our framework in realistic quantum devices. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.","PeriodicalId":52176,"journal":{"name":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","volume":"9 ","pages":"290-302"},"PeriodicalIF":1.8000,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing\",\"authors\":\"Wenbo Sun;Sathwik Bharadwaj;Runwei Zhou;Dan Jiao;Zubin Jacob\",\"doi\":\"10.1109/JMMCT.2024.3439531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state spin qubits have emerged as promising platforms for quantum information. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near lossy material components in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum devices, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a quantum computational electromagnetics framework to control low-frequency magnetic fluctuation noise and enhance spin qubit device performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. Furthermore, we demonstrate the application of our framework in realistic quantum devices. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.\",\"PeriodicalId\":52176,\"journal\":{\"name\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"volume\":\"9 \",\"pages\":\"290-302\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Journal on Multiscale and Multiphysics Computational Techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10627990/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Journal on Multiscale and Multiphysics Computational Techniques","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10627990/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

固态自旋量子比特已成为前景广阔的量子信息平台。尽管在控制自旋量子比特应用中的噪声方面做出了大量努力,但一个重要但较少控制的噪声源是近场电磁波动。低频(兆赫和千兆赫)电磁波动在量子应用中的有损材料元件附近显著增强,包括量子计算设备中控制自旋量子比特所需的金属/超导栅极,以及量子传感中需要探测的材料/纳米结构。尽管控制这种低频电磁波动噪声对提高量子设备的性能至关重要,但目前的努力却受到计算挑战的阻碍。在本文中,我们利用先进的计算电磁学技术,特别是基于体积积分方程的快速精确求解器,来克服计算障碍。我们介绍了一种量子计算电磁学框架,用于控制低频磁波动噪声并提高自旋量子比特器件的性能。我们的框架将计算电磁学的应用扩展到了自旋量子比特器件。此外,我们还展示了我们的框架在现实量子器件中的应用。我们的工作为控制磁波动、提高自旋比特量子传感和计算性能的器件工程铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing
Solid-state spin qubits have emerged as promising platforms for quantum information. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near lossy material components in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum devices, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a quantum computational electromagnetics framework to control low-frequency magnetic fluctuation noise and enhance spin qubit device performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. Furthermore, we demonstrate the application of our framework in realistic quantum devices. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
27
期刊最新文献
Scale-Compressed Technique in Finite-Difference Time-Domain Method for Multi-Layered Anisotropic Media Experimental and Numerical Modeling of Magnetic Drug Targeting: Can We Trust Particle-Based Models? Table of Contents Editorial Rigorous Indoor Wireless Communication System Simulations With Deep Learning-Based Radio Propagation Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1