在基于微观结构的晶体塑性建模辅助下,以蠕变条件为导向设计添加了 La2O3 的钼合金

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-09-01 DOI:10.1016/j.jmst.2024.08.012
Jie Kuang, Wei Wen, Pengming Cheng, Gang Liu, Jinyu Zhang, Jun Sun
{"title":"在基于微观结构的晶体塑性建模辅助下,以蠕变条件为导向设计添加了 La2O3 的钼合金","authors":"Jie Kuang, Wei Wen, Pengming Cheng, Gang Liu, Jinyu Zhang, Jun Sun","doi":"10.1016/j.jmst.2024.08.012","DOIUrl":null,"url":null,"abstract":"<p>Molybdenum (Mo) alloys are essential for applications requiring outstanding mechanical properties at high temperatures across various industrial sectors. Understanding and predicting the creep properties of Mo alloys is crucial for service safety and the design of new materials. This study introduces a physics-based crystallographic creep model dedicated to the characteristic hierarchical microstructure of Mo–La<sub>2</sub>O<sub>3</sub> alloys. By sourcing most parameters from existing literature and calibrating others within recommended ranges, the model efficiently predicts creep behavior beyond its initial calibration scope. Through the integration of microstructure descriptors, we systematically explored the impact of different microstructural features on creep behavior and identified underlying mechanisms. This analysis yielded two pivotal concepts: the minimum acceptable grain size and the necessary nanoparticle number density. These metrics, readily obtainable from the model, quantify the requisite grain size and nanoparticle content to achieve the target steady-state creep rates for operational demands, thus providing essential insights for the creep condition-oriented design of Mo–La<sub>2</sub>O<sub>3</sub> alloys. The model is also expected to be adaptable for developing other Mo alloys reinforced by second phase particles, aimed at achieving desired creep properties under specified conditions, assuming that relevant parameters are accessible through literature or lower-scale simulations.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Creep condition-oriented design of molybdenum alloys with La2O3 addition assisted by microstructure-based crystal plasticity modeling\",\"authors\":\"Jie Kuang, Wei Wen, Pengming Cheng, Gang Liu, Jinyu Zhang, Jun Sun\",\"doi\":\"10.1016/j.jmst.2024.08.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Molybdenum (Mo) alloys are essential for applications requiring outstanding mechanical properties at high temperatures across various industrial sectors. Understanding and predicting the creep properties of Mo alloys is crucial for service safety and the design of new materials. This study introduces a physics-based crystallographic creep model dedicated to the characteristic hierarchical microstructure of Mo–La<sub>2</sub>O<sub>3</sub> alloys. By sourcing most parameters from existing literature and calibrating others within recommended ranges, the model efficiently predicts creep behavior beyond its initial calibration scope. Through the integration of microstructure descriptors, we systematically explored the impact of different microstructural features on creep behavior and identified underlying mechanisms. This analysis yielded two pivotal concepts: the minimum acceptable grain size and the necessary nanoparticle number density. These metrics, readily obtainable from the model, quantify the requisite grain size and nanoparticle content to achieve the target steady-state creep rates for operational demands, thus providing essential insights for the creep condition-oriented design of Mo–La<sub>2</sub>O<sub>3</sub> alloys. The model is also expected to be adaptable for developing other Mo alloys reinforced by second phase particles, aimed at achieving desired creep properties under specified conditions, assuming that relevant parameters are accessible through literature or lower-scale simulations.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.012\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.012","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钼(Mo)合金对于要求在高温下具有出色机械性能的各种工业应用来说至关重要。了解和预测钼合金的蠕变特性对使用安全和新材料的设计至关重要。本研究针对 Mo-La2O3 合金特有的分层微结构,介绍了一种基于物理学的晶体蠕变模型。通过从现有文献中获取大部分参数并在推荐范围内校准其他参数,该模型可有效预测超出其初始校准范围的蠕变行为。通过整合微观结构描述符,我们系统地探索了不同微观结构特征对蠕变行为的影响,并确定了潜在机制。这一分析得出了两个关键概念:最小可接受晶粒尺寸和必要的纳米粒子数量密度。这些指标很容易从模型中获得,可以量化达到目标稳态蠕变速率所需的晶粒尺寸和纳米粒子含量,从而为以蠕变条件为导向的 Mo-La2O3 合金设计提供重要启示。假定相关参数可通过文献或低尺度模拟获得,该模型还可用于开发由第二相颗粒增强的其他钼合金,以在特定条件下实现理想的蠕变性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Creep condition-oriented design of molybdenum alloys with La2O3 addition assisted by microstructure-based crystal plasticity modeling

Molybdenum (Mo) alloys are essential for applications requiring outstanding mechanical properties at high temperatures across various industrial sectors. Understanding and predicting the creep properties of Mo alloys is crucial for service safety and the design of new materials. This study introduces a physics-based crystallographic creep model dedicated to the characteristic hierarchical microstructure of Mo–La2O3 alloys. By sourcing most parameters from existing literature and calibrating others within recommended ranges, the model efficiently predicts creep behavior beyond its initial calibration scope. Through the integration of microstructure descriptors, we systematically explored the impact of different microstructural features on creep behavior and identified underlying mechanisms. This analysis yielded two pivotal concepts: the minimum acceptable grain size and the necessary nanoparticle number density. These metrics, readily obtainable from the model, quantify the requisite grain size and nanoparticle content to achieve the target steady-state creep rates for operational demands, thus providing essential insights for the creep condition-oriented design of Mo–La2O3 alloys. The model is also expected to be adaptable for developing other Mo alloys reinforced by second phase particles, aimed at achieving desired creep properties under specified conditions, assuming that relevant parameters are accessible through literature or lower-scale simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Dispersion, solid solution, and covalent bond coupled to strengthen K4169/TiAl composite brazed joints: first-principles and experimental perspective Elucidating the effect of cyclic plasticity on strengthening mechanisms and fatigue property of 5xxx Al alloys Ti3C2Tx MXene enhanced PEO/SN-based solid electrolyte for high-performance Li metal battery Electron structure customization of molybdenum phosphide via lanthanum doping toward highly efficient overall water splitting Self-regulating heating and self-powered flexible fiber fabrics at low temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1