在 Au-ZrO2 纳米复合材料中形成超稳定金纳米粒子

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-09-01 DOI:10.1016/j.jmst.2024.08.007
Panmei Liu, Shuo Ma, Jianbo Zhang, Yuan Huang, Yongchang Liu, Zumin Wang
{"title":"在 Au-ZrO2 纳米复合材料中形成超稳定金纳米粒子","authors":"Panmei Liu, Shuo Ma, Jianbo Zhang, Yuan Huang, Yongchang Liu, Zumin Wang","doi":"10.1016/j.jmst.2024.08.007","DOIUrl":null,"url":null,"abstract":"<p>To improve the thermal stability of nanocrystalline (NC) metals, their interface structure can be modified by applying amorphous intergranular layers. However, traditional amorphous metallic intergranular layers are rarely formed in most pure metals or alloys. In this study, we demonstrate that amorphous oxide intergranular layers can greatly improve the thermal stability of NC metals by tailoring the grain boundaries (GBs) of NC metals. Using a Au–ZrO<sub>2</sub> model system, ultra-fine Au nanoparticles (∼ 3 nm) with exceptional thermal stability at temperatures up to 600°C were formed after introducing amorphous ZrO<sub>2</sub> intergranular layers at the GBs of NC Au. Quantitative thermodynamic model calculations revealed that the exceptional thermal stability of the Au nanoparticles originated fundamentally from the formation of low-energy Au|ZrO<sub>2</sub> interfaces. The kinetic stabilization was further discussed, showing that the Ostwald ripening of Au nanoparticles was suppressed due to the presence of amorphous ZrO<sub>2</sub> intergranular. This study sheds light on new strategies for enhancing the thermal stability of NC metals by utilizing amorphous oxide intergranular layers, paving the way for the achievement of ultra-stable NC metals through interface modification.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation of ultra-stable Au nanoparticles in Au–ZrO2 nanocomposites\",\"authors\":\"Panmei Liu, Shuo Ma, Jianbo Zhang, Yuan Huang, Yongchang Liu, Zumin Wang\",\"doi\":\"10.1016/j.jmst.2024.08.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To improve the thermal stability of nanocrystalline (NC) metals, their interface structure can be modified by applying amorphous intergranular layers. However, traditional amorphous metallic intergranular layers are rarely formed in most pure metals or alloys. In this study, we demonstrate that amorphous oxide intergranular layers can greatly improve the thermal stability of NC metals by tailoring the grain boundaries (GBs) of NC metals. Using a Au–ZrO<sub>2</sub> model system, ultra-fine Au nanoparticles (∼ 3 nm) with exceptional thermal stability at temperatures up to 600°C were formed after introducing amorphous ZrO<sub>2</sub> intergranular layers at the GBs of NC Au. Quantitative thermodynamic model calculations revealed that the exceptional thermal stability of the Au nanoparticles originated fundamentally from the formation of low-energy Au|ZrO<sub>2</sub> interfaces. The kinetic stabilization was further discussed, showing that the Ostwald ripening of Au nanoparticles was suppressed due to the presence of amorphous ZrO<sub>2</sub> intergranular. This study sheds light on new strategies for enhancing the thermal stability of NC metals by utilizing amorphous oxide intergranular layers, paving the way for the achievement of ultra-stable NC metals through interface modification.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.007\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.007","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

为了提高纳米晶(NC)金属的热稳定性,可以通过应用非晶晶间层来改变其界面结构。然而,大多数纯金属或合金很少形成传统的非晶态金属晶间层。在本研究中,我们证明了非晶氧化物晶间层可以通过调整数控金属的晶界 (GB) 来大大提高数控金属的热稳定性。利用金-氧化锆模型体系,在数控金的晶界处引入无定形氧化锆晶间层后,形成了超细金纳米颗粒(3 nm),在高达 600°C 的温度下具有优异的热稳定性。定量热力学模型计算表明,金纳米粒子的优异热稳定性主要源于低能 Au|ZrO2 界面的形成。研究还进一步讨论了动力学稳定问题,结果表明由于晶间存在无定形的 ZrO2,金纳米粒子的奥斯特瓦尔德熟化受到了抑制。这项研究揭示了利用非晶氧化物晶间层提高数控金属热稳定性的新策略,为通过界面改性实现超稳定数控金属铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation of ultra-stable Au nanoparticles in Au–ZrO2 nanocomposites

To improve the thermal stability of nanocrystalline (NC) metals, their interface structure can be modified by applying amorphous intergranular layers. However, traditional amorphous metallic intergranular layers are rarely formed in most pure metals or alloys. In this study, we demonstrate that amorphous oxide intergranular layers can greatly improve the thermal stability of NC metals by tailoring the grain boundaries (GBs) of NC metals. Using a Au–ZrO2 model system, ultra-fine Au nanoparticles (∼ 3 nm) with exceptional thermal stability at temperatures up to 600°C were formed after introducing amorphous ZrO2 intergranular layers at the GBs of NC Au. Quantitative thermodynamic model calculations revealed that the exceptional thermal stability of the Au nanoparticles originated fundamentally from the formation of low-energy Au|ZrO2 interfaces. The kinetic stabilization was further discussed, showing that the Ostwald ripening of Au nanoparticles was suppressed due to the presence of amorphous ZrO2 intergranular. This study sheds light on new strategies for enhancing the thermal stability of NC metals by utilizing amorphous oxide intergranular layers, paving the way for the achievement of ultra-stable NC metals through interface modification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Unveiling the interaction between corrosion products and oxygen reduction on the corrosion of Mg–4Nd–0.4Zr alloy under thin electrolyte layers Synergistic inhibition to dissolution corrosion by de-twinning and precipitation in alumina-forming austenitic steel exposed to lead-bismuth eutectic with 10-8 wt.% oxygen at 600°C Effects of water content on the corrosion behavior of NiCu low alloy steel embedded in compacted GMZ bentonite In-situ nitrogen-doped carbon nanotube-encapsulated Co9S8 nanoparticles as self-supporting bifunctional air electrodes for zinc-air batteries A universal descriptor to determine the effect of solutes in segregation at grain boundaries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1