Jiandong Qiu, Sicheng Fu, Jushang Ou, Kai Tang, Xinming Qu, Shixiao Liang, Xin Wang, Bin Ran
{"title":"利用稀疏流量数据采样,通过链路速度估算链路流量","authors":"Jiandong Qiu, Sicheng Fu, Jushang Ou, Kai Tang, Xinming Qu, Shixiao Liang, Xin Wang, Bin Ran","doi":"10.1111/mice.13323","DOIUrl":null,"url":null,"abstract":"In modern transportation systems, network‐wide traffic flow estimation is crucial for informed decision making, strategic infrastructure planning, and effective traffic management. While the limited availability of observed road‐segment traffic flow data presents a significant challenge, the emerging collection of Global Navigation Satellite System (GNSS) speed data across the entire network provides an alternative method for estimating the missing traffic flow information. To this end, this paper introduces a novel approach to estimating network‐wide road‐segment traffic flow. This approach takes advantage of the abundantly available GNSS speed data, coupled with only sparsely observed traffic flow samples. By integrating the principles of dynamic traffic assignment models with sparse recovery techniques, we formulate the problem of traffic flow estimation as a Least Absolute Shrinkage and Selection Operator (LASSO) optimization task. The efficacy and practical applicability of our proposed method are validated through evaluations using both hypothetical and real‐world case studies. The experimental findings exhibit a close alignment between the estimated and ground‐truth link flows across different time periods. Additionally, the method consistently produces low mean estimation errors for the majority of road segments, underlining the potential for our approach in effectively managing traffic flow estimation for large‐scale road networks, particularly in situations characterized by data scarcity.","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"19 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating link flow through link speed with sparse flow data sampling\",\"authors\":\"Jiandong Qiu, Sicheng Fu, Jushang Ou, Kai Tang, Xinming Qu, Shixiao Liang, Xin Wang, Bin Ran\",\"doi\":\"10.1111/mice.13323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In modern transportation systems, network‐wide traffic flow estimation is crucial for informed decision making, strategic infrastructure planning, and effective traffic management. While the limited availability of observed road‐segment traffic flow data presents a significant challenge, the emerging collection of Global Navigation Satellite System (GNSS) speed data across the entire network provides an alternative method for estimating the missing traffic flow information. To this end, this paper introduces a novel approach to estimating network‐wide road‐segment traffic flow. This approach takes advantage of the abundantly available GNSS speed data, coupled with only sparsely observed traffic flow samples. By integrating the principles of dynamic traffic assignment models with sparse recovery techniques, we formulate the problem of traffic flow estimation as a Least Absolute Shrinkage and Selection Operator (LASSO) optimization task. The efficacy and practical applicability of our proposed method are validated through evaluations using both hypothetical and real‐world case studies. The experimental findings exhibit a close alignment between the estimated and ground‐truth link flows across different time periods. Additionally, the method consistently produces low mean estimation errors for the majority of road segments, underlining the potential for our approach in effectively managing traffic flow estimation for large‐scale road networks, particularly in situations characterized by data scarcity.\",\"PeriodicalId\":156,\"journal\":{\"name\":\"Computer-Aided Civil and Infrastructure Engineering\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer-Aided Civil and Infrastructure Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/mice.13323\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/mice.13323","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Estimating link flow through link speed with sparse flow data sampling
In modern transportation systems, network‐wide traffic flow estimation is crucial for informed decision making, strategic infrastructure planning, and effective traffic management. While the limited availability of observed road‐segment traffic flow data presents a significant challenge, the emerging collection of Global Navigation Satellite System (GNSS) speed data across the entire network provides an alternative method for estimating the missing traffic flow information. To this end, this paper introduces a novel approach to estimating network‐wide road‐segment traffic flow. This approach takes advantage of the abundantly available GNSS speed data, coupled with only sparsely observed traffic flow samples. By integrating the principles of dynamic traffic assignment models with sparse recovery techniques, we formulate the problem of traffic flow estimation as a Least Absolute Shrinkage and Selection Operator (LASSO) optimization task. The efficacy and practical applicability of our proposed method are validated through evaluations using both hypothetical and real‐world case studies. The experimental findings exhibit a close alignment between the estimated and ground‐truth link flows across different time periods. Additionally, the method consistently produces low mean estimation errors for the majority of road segments, underlining the potential for our approach in effectively managing traffic flow estimation for large‐scale road networks, particularly in situations characterized by data scarcity.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.