A K M Sahfiqul Islam, Rejwan Bhuiyan, Mohammad Ashik Iqbal Khan, Shamima Akter, Md Rashidul Islam, Md Atiqur Rahman Khokon, Mohammad Abdul Latif
{"title":"绿色合成氧化锌纳米粒子与杀真菌剂对水稻鞘枯病根瘤菌的协同抗真菌活性","authors":"A K M Sahfiqul Islam, Rejwan Bhuiyan, Mohammad Ashik Iqbal Khan, Shamima Akter, Md Rashidul Islam, Md Atiqur Rahman Khokon, Mohammad Abdul Latif","doi":"10.1007/s12010-024-05020-3","DOIUrl":null,"url":null,"abstract":"<p><p>The biosynthesis of metal oxide nanoparticles using leaf extract of medicinal plants is a promising substitute for the traditional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from local \"Dholkolmi\" (Ipomoea carnea) leaf extract which is a medicinal plant growing outside the roads of different regions of Bangladesh. The biosynthesized zinc oxide nanoparticles (ZnONPs) were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, zeta-potential, scanning electron microscopy-energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The results of UV-visible spectrophotometers observed an absorption peak at 373 nm wavelength, which confirmed the synthesis of ZnONPs in the solution. ZnONP sizes determined by XRD, DLS, and TEM are approximately ~37 nm, 105.61 nm, and 19.66 nm, respectively. ZnONPs were present because of the strong oxygen and zinc signals in the EDX profile. Additionally, this research assessed the antifungal activity of the biosynthesized ZnONPs and as well as folicur-incorporated ZnONPs against Rhizoctonia solani by the poison bait technique. According to the result of this study, ZnONPs synthesized from Ipomoea carnea leaf extract showed no promising result against Rhizoctonia solani mycelial growth reduction. But folicur-incorporated ZnONPs revealed a significant finding with a maximum 100% inhibition of mycelial growth at 1:1 and 3:1 ratio of ZnONPs with folicur fungicide under in vitro conditions. In the net house experiment, folicur-incorporated ZnONPs at a 1:1 ratio of ZnONPs with folicur showed considerable disease inhibition (26.96% RLH) as compared to disease control (52.83% RLH). In the case of rainfed transplanted Aus (March-June), the highest percentage of RLH was recorded in disease control (64.61%), and the lowest RLH was found in folicur (24.79%) followed by a 1:1 ratio of ZnONPs with folicur (32.10%) in field condition. On the other hand, the highest percentage of RLH was recorded in disease control (65.31%) and the lowest RLH was found in folicur (18.14%) followed by a 1:1 ratio of ZnONPs with folicur (21.39%) in rainfed transplanted Aman (July-November) season. The findings of the in vitro and in vivo studies provided evidence that ZnONPs and folicur had a strong synergistic antifungal impact and may be employed as a possible rice sheath blight disease management agent.</p>","PeriodicalId":465,"journal":{"name":"Applied Biochemistry and Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergistic Antifungal Activity of Green Synthesized Zinc Oxide Nanoparticles and Fungicide Against Rhizoctonia solani Causing Rice Sheath Blight Disease.\",\"authors\":\"A K M Sahfiqul Islam, Rejwan Bhuiyan, Mohammad Ashik Iqbal Khan, Shamima Akter, Md Rashidul Islam, Md Atiqur Rahman Khokon, Mohammad Abdul Latif\",\"doi\":\"10.1007/s12010-024-05020-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biosynthesis of metal oxide nanoparticles using leaf extract of medicinal plants is a promising substitute for the traditional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from local \\\"Dholkolmi\\\" (Ipomoea carnea) leaf extract which is a medicinal plant growing outside the roads of different regions of Bangladesh. The biosynthesized zinc oxide nanoparticles (ZnONPs) were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, zeta-potential, scanning electron microscopy-energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The results of UV-visible spectrophotometers observed an absorption peak at 373 nm wavelength, which confirmed the synthesis of ZnONPs in the solution. ZnONP sizes determined by XRD, DLS, and TEM are approximately ~37 nm, 105.61 nm, and 19.66 nm, respectively. ZnONPs were present because of the strong oxygen and zinc signals in the EDX profile. Additionally, this research assessed the antifungal activity of the biosynthesized ZnONPs and as well as folicur-incorporated ZnONPs against Rhizoctonia solani by the poison bait technique. According to the result of this study, ZnONPs synthesized from Ipomoea carnea leaf extract showed no promising result against Rhizoctonia solani mycelial growth reduction. But folicur-incorporated ZnONPs revealed a significant finding with a maximum 100% inhibition of mycelial growth at 1:1 and 3:1 ratio of ZnONPs with folicur fungicide under in vitro conditions. In the net house experiment, folicur-incorporated ZnONPs at a 1:1 ratio of ZnONPs with folicur showed considerable disease inhibition (26.96% RLH) as compared to disease control (52.83% RLH). In the case of rainfed transplanted Aus (March-June), the highest percentage of RLH was recorded in disease control (64.61%), and the lowest RLH was found in folicur (24.79%) followed by a 1:1 ratio of ZnONPs with folicur (32.10%) in field condition. On the other hand, the highest percentage of RLH was recorded in disease control (65.31%) and the lowest RLH was found in folicur (18.14%) followed by a 1:1 ratio of ZnONPs with folicur (21.39%) in rainfed transplanted Aman (July-November) season. The findings of the in vitro and in vivo studies provided evidence that ZnONPs and folicur had a strong synergistic antifungal impact and may be employed as a possible rice sheath blight disease management agent.</p>\",\"PeriodicalId\":465,\"journal\":{\"name\":\"Applied Biochemistry and Biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biochemistry and Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12010-024-05020-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biochemistry and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12010-024-05020-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Synergistic Antifungal Activity of Green Synthesized Zinc Oxide Nanoparticles and Fungicide Against Rhizoctonia solani Causing Rice Sheath Blight Disease.
The biosynthesis of metal oxide nanoparticles using leaf extract of medicinal plants is a promising substitute for the traditional chemical method. This work aimed to synthesize zinc oxide nanoparticles using a green approach from local "Dholkolmi" (Ipomoea carnea) leaf extract which is a medicinal plant growing outside the roads of different regions of Bangladesh. The biosynthesized zinc oxide nanoparticles (ZnONPs) were characterized using ultraviolet-visible spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, particle size analyzer, zeta-potential, scanning electron microscopy-energy dispersive spectroscopy, field emission scanning electron microscopy, and transmission electron microscopy. The results of UV-visible spectrophotometers observed an absorption peak at 373 nm wavelength, which confirmed the synthesis of ZnONPs in the solution. ZnONP sizes determined by XRD, DLS, and TEM are approximately ~37 nm, 105.61 nm, and 19.66 nm, respectively. ZnONPs were present because of the strong oxygen and zinc signals in the EDX profile. Additionally, this research assessed the antifungal activity of the biosynthesized ZnONPs and as well as folicur-incorporated ZnONPs against Rhizoctonia solani by the poison bait technique. According to the result of this study, ZnONPs synthesized from Ipomoea carnea leaf extract showed no promising result against Rhizoctonia solani mycelial growth reduction. But folicur-incorporated ZnONPs revealed a significant finding with a maximum 100% inhibition of mycelial growth at 1:1 and 3:1 ratio of ZnONPs with folicur fungicide under in vitro conditions. In the net house experiment, folicur-incorporated ZnONPs at a 1:1 ratio of ZnONPs with folicur showed considerable disease inhibition (26.96% RLH) as compared to disease control (52.83% RLH). In the case of rainfed transplanted Aus (March-June), the highest percentage of RLH was recorded in disease control (64.61%), and the lowest RLH was found in folicur (24.79%) followed by a 1:1 ratio of ZnONPs with folicur (32.10%) in field condition. On the other hand, the highest percentage of RLH was recorded in disease control (65.31%) and the lowest RLH was found in folicur (18.14%) followed by a 1:1 ratio of ZnONPs with folicur (21.39%) in rainfed transplanted Aman (July-November) season. The findings of the in vitro and in vivo studies provided evidence that ZnONPs and folicur had a strong synergistic antifungal impact and may be employed as a possible rice sheath blight disease management agent.
期刊介绍:
This journal is devoted to publishing the highest quality innovative papers in the fields of biochemistry and biotechnology. The typical focus of the journal is to report applications of novel scientific and technological breakthroughs, as well as technological subjects that are still in the proof-of-concept stage. Applied Biochemistry and Biotechnology provides a forum for case studies and practical concepts of biotechnology, utilization, including controls, statistical data analysis, problem descriptions unique to a particular application, and bioprocess economic analyses. The journal publishes reviews deemed of interest to readers, as well as book reviews, meeting and symposia notices, and news items relating to biotechnology in both the industrial and academic communities.
In addition, Applied Biochemistry and Biotechnology often publishes lists of patents and publications of special interest to readers.