Jenny Alderden, Jace Johnny, Katie R Brooks, Andrew Wilson, Tracey L Yap, Yunchuan Lucy Zhao, Mark van der Laan, Susan Kennerly
{"title":"用于早期预测压伤风险的可解释人工智能。","authors":"Jenny Alderden, Jace Johnny, Katie R Brooks, Andrew Wilson, Tracey L Yap, Yunchuan Lucy Zhao, Mark van der Laan, Susan Kennerly","doi":"10.4037/ajcc2024856","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Hospital-acquired pressure injuries (HAPIs) have a major impact on patient outcomes in intensive care units (ICUs). Effective prevention relies on early and accurate risk assessment. Traditional risk-assessment tools, such as the Braden Scale, often fail to capture ICU-specific factors, limiting their predictive accuracy. Although artificial intelligence models offer improved accuracy, their \"black box\" nature poses a barrier to clinical adoption.</p><p><strong>Objective: </strong>To develop an artificial intelligence-based HAPI risk-assessment model enhanced with an explainable artificial intelligence dashboard to improve interpretability at both the global and individual patient levels.</p><p><strong>Methods: </strong>An explainable artificial intelligence approach was used to analyze ICU patient data from the Medical Information Mart for Intensive Care. Predictor variables were restricted to the first 48 hours after ICU admission. Various machine-learning algorithms were evaluated, culminating in an ensemble \"super learner\" model. The model's performance was quantified using the area under the receiver operating characteristic curve through 5-fold cross-validation. An explainer dashboard was developed (using synthetic data for patient privacy), featuring interactive visualizations for in-depth model interpretation at the global and local levels.</p><p><strong>Results: </strong>The final sample comprised 28 395 patients with a 4.9% incidence of HAPIs. The ensemble super learner model performed well (area under curve = 0.80). The explainer dashboard provided global and patient-level interactive visualizations of model predictions, showing each variable's influence on the risk-assessment outcome.</p><p><strong>Conclusion: </strong>The model and its dashboard provide clinicians with a transparent, interpretable artificial intelligence-based risk-assessment system for HAPIs that may enable more effective and timely preventive interventions.</p>","PeriodicalId":7607,"journal":{"name":"American Journal of Critical Care","volume":"33 5","pages":"373-381"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Explainable Artificial Intelligence for Early Prediction of Pressure Injury Risk.\",\"authors\":\"Jenny Alderden, Jace Johnny, Katie R Brooks, Andrew Wilson, Tracey L Yap, Yunchuan Lucy Zhao, Mark van der Laan, Susan Kennerly\",\"doi\":\"10.4037/ajcc2024856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Hospital-acquired pressure injuries (HAPIs) have a major impact on patient outcomes in intensive care units (ICUs). Effective prevention relies on early and accurate risk assessment. Traditional risk-assessment tools, such as the Braden Scale, often fail to capture ICU-specific factors, limiting their predictive accuracy. Although artificial intelligence models offer improved accuracy, their \\\"black box\\\" nature poses a barrier to clinical adoption.</p><p><strong>Objective: </strong>To develop an artificial intelligence-based HAPI risk-assessment model enhanced with an explainable artificial intelligence dashboard to improve interpretability at both the global and individual patient levels.</p><p><strong>Methods: </strong>An explainable artificial intelligence approach was used to analyze ICU patient data from the Medical Information Mart for Intensive Care. Predictor variables were restricted to the first 48 hours after ICU admission. Various machine-learning algorithms were evaluated, culminating in an ensemble \\\"super learner\\\" model. The model's performance was quantified using the area under the receiver operating characteristic curve through 5-fold cross-validation. An explainer dashboard was developed (using synthetic data for patient privacy), featuring interactive visualizations for in-depth model interpretation at the global and local levels.</p><p><strong>Results: </strong>The final sample comprised 28 395 patients with a 4.9% incidence of HAPIs. The ensemble super learner model performed well (area under curve = 0.80). The explainer dashboard provided global and patient-level interactive visualizations of model predictions, showing each variable's influence on the risk-assessment outcome.</p><p><strong>Conclusion: </strong>The model and its dashboard provide clinicians with a transparent, interpretable artificial intelligence-based risk-assessment system for HAPIs that may enable more effective and timely preventive interventions.</p>\",\"PeriodicalId\":7607,\"journal\":{\"name\":\"American Journal of Critical Care\",\"volume\":\"33 5\",\"pages\":\"373-381\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Critical Care\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.4037/ajcc2024856\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CRITICAL CARE MEDICINE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Critical Care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.4037/ajcc2024856","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CRITICAL CARE MEDICINE","Score":null,"Total":0}
Explainable Artificial Intelligence for Early Prediction of Pressure Injury Risk.
Background: Hospital-acquired pressure injuries (HAPIs) have a major impact on patient outcomes in intensive care units (ICUs). Effective prevention relies on early and accurate risk assessment. Traditional risk-assessment tools, such as the Braden Scale, often fail to capture ICU-specific factors, limiting their predictive accuracy. Although artificial intelligence models offer improved accuracy, their "black box" nature poses a barrier to clinical adoption.
Objective: To develop an artificial intelligence-based HAPI risk-assessment model enhanced with an explainable artificial intelligence dashboard to improve interpretability at both the global and individual patient levels.
Methods: An explainable artificial intelligence approach was used to analyze ICU patient data from the Medical Information Mart for Intensive Care. Predictor variables were restricted to the first 48 hours after ICU admission. Various machine-learning algorithms were evaluated, culminating in an ensemble "super learner" model. The model's performance was quantified using the area under the receiver operating characteristic curve through 5-fold cross-validation. An explainer dashboard was developed (using synthetic data for patient privacy), featuring interactive visualizations for in-depth model interpretation at the global and local levels.
Results: The final sample comprised 28 395 patients with a 4.9% incidence of HAPIs. The ensemble super learner model performed well (area under curve = 0.80). The explainer dashboard provided global and patient-level interactive visualizations of model predictions, showing each variable's influence on the risk-assessment outcome.
Conclusion: The model and its dashboard provide clinicians with a transparent, interpretable artificial intelligence-based risk-assessment system for HAPIs that may enable more effective and timely preventive interventions.
期刊介绍:
The editors of the American Journal of Critical Care
(AJCC) invite authors to submit original manuscripts
describing investigations, advances, or observations from
all specialties related to the care of critically and acutely ill
patients. Papers promoting collaborative practice and
research are encouraged. Manuscripts will be considered
on the understanding that they have not been published
elsewhere and have been submitted solely to AJCC.