PSSM-Sumo:基于深度学习的智能模型,利用判别特征预测苏木酰化位点。

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-08-30 DOI:10.1186/s12859-024-05917-0
Salman Khan, Salman A AlQahtani, Sumaiya Noor, Nijad Ahmad
{"title":"PSSM-Sumo:基于深度学习的智能模型,利用判别特征预测苏木酰化位点。","authors":"Salman Khan, Salman A AlQahtani, Sumaiya Noor, Nijad Ahmad","doi":"10.1186/s12859-024-05917-0","DOIUrl":null,"url":null,"abstract":"<p><p>Post-translational modifications (PTMs) are fundamental to essential biological processes, exerting significant influence over gene expression, protein localization, stability, and genome replication. Sumoylation, a PTM involving the covalent addition of a chemical group to a specific protein sequence, profoundly impacts the functional diversity of proteins. Notably, identifying sumoylation sites has garnered significant attention due to their crucial roles in proteomic functions and their implications in various diseases, including Parkinson's and Alzheimer's. Despite the proposal of several computational models for identifying sumoylation sites, their effectiveness could be improved by the limitations associated with conventional learning methodologies. In this study, we introduce pseudo-position-specific scoring matrix (PsePSSM), a robust computational model designed for accurately predicting sumoylation sites using an optimized deep learning algorithm and efficient feature extraction techniques. Moreover, to streamline computational processes and eliminate irrelevant and noisy features, sequential forward selection using a support vector machine (SFS-SVM) is implemented to identify optimal features. The multi-layer Deep Neural Network (DNN) is a robust classifier, facilitating precise sumoylation site prediction. We meticulously assess the performance of PSSM-Sumo through a tenfold cross-validation approach, employing various statistical metrics such as the Matthews Correlation Coefficient (MCC), accuracy, sensitivity, specificity, and the Area under the ROC Curve (AUC). Comparative analyses reveal that PSSM-Sumo achieves an exceptional average prediction accuracy of 98.71%, surpassing existing models. The robustness and accuracy of the proposed model position it as a promising tool for advancing drug discovery and the diagnosis of diverse diseases linked to sumoylation sites.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363370/pdf/","citationCount":"0","resultStr":"{\"title\":\"PSSM-Sumo: deep learning based intelligent model for prediction of sumoylation sites using discriminative features.\",\"authors\":\"Salman Khan, Salman A AlQahtani, Sumaiya Noor, Nijad Ahmad\",\"doi\":\"10.1186/s12859-024-05917-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Post-translational modifications (PTMs) are fundamental to essential biological processes, exerting significant influence over gene expression, protein localization, stability, and genome replication. Sumoylation, a PTM involving the covalent addition of a chemical group to a specific protein sequence, profoundly impacts the functional diversity of proteins. Notably, identifying sumoylation sites has garnered significant attention due to their crucial roles in proteomic functions and their implications in various diseases, including Parkinson's and Alzheimer's. Despite the proposal of several computational models for identifying sumoylation sites, their effectiveness could be improved by the limitations associated with conventional learning methodologies. In this study, we introduce pseudo-position-specific scoring matrix (PsePSSM), a robust computational model designed for accurately predicting sumoylation sites using an optimized deep learning algorithm and efficient feature extraction techniques. Moreover, to streamline computational processes and eliminate irrelevant and noisy features, sequential forward selection using a support vector machine (SFS-SVM) is implemented to identify optimal features. The multi-layer Deep Neural Network (DNN) is a robust classifier, facilitating precise sumoylation site prediction. We meticulously assess the performance of PSSM-Sumo through a tenfold cross-validation approach, employing various statistical metrics such as the Matthews Correlation Coefficient (MCC), accuracy, sensitivity, specificity, and the Area under the ROC Curve (AUC). Comparative analyses reveal that PSSM-Sumo achieves an exceptional average prediction accuracy of 98.71%, surpassing existing models. The robustness and accuracy of the proposed model position it as a promising tool for advancing drug discovery and the diagnosis of diverse diseases linked to sumoylation sites.</p>\",\"PeriodicalId\":8958,\"journal\":{\"name\":\"BMC Bioinformatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11363370/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12859-024-05917-0\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05917-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

翻译后修饰(PTM)是重要生物过程的基础,对基因表达、蛋白质定位、稳定性和基因组复制有重大影响。苏木酰化是一种涉及在特定蛋白质序列上共价添加化学基团的 PTM,对蛋白质的功能多样性有深远影响。值得注意的是,由于苏木酰化位点在蛋白质组功能中的关键作用及其对包括帕金森氏症和阿尔茨海默氏症在内的各种疾病的影响,确定苏木酰化位点已引起了极大的关注。尽管已经提出了几种用于鉴定苏木酰化位点的计算模型,但由于传统学习方法的局限性,这些模型的有效性还有待提高。在本研究中,我们引入了伪位置特异性评分矩阵(PsePSSM),这是一种稳健的计算模型,旨在利用优化的深度学习算法和高效的特征提取技术准确预测苏木酰化位点。此外,为了简化计算过程并消除不相关和有噪声的特征,利用支持向量机(SFS-SVM)实施了顺序前向选择,以确定最佳特征。多层深度神经网络(DNN)是一种稳健的分类器,有助于精确预测苏木酰化位点。我们采用马修斯相关系数(MCC)、准确率、灵敏度、特异性和 ROC 曲线下面积(AUC)等各种统计指标,通过十倍交叉验证方法对 PSSM-Sumo 的性能进行了细致评估。对比分析表明,PSSM-Sumo 的平均预测准确率高达 98.71%,超越了现有模型。所提模型的稳健性和准确性使其成为推动药物发现和诊断与苏木酰化位点相关的各种疾病的一种有前途的工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PSSM-Sumo: deep learning based intelligent model for prediction of sumoylation sites using discriminative features.

Post-translational modifications (PTMs) are fundamental to essential biological processes, exerting significant influence over gene expression, protein localization, stability, and genome replication. Sumoylation, a PTM involving the covalent addition of a chemical group to a specific protein sequence, profoundly impacts the functional diversity of proteins. Notably, identifying sumoylation sites has garnered significant attention due to their crucial roles in proteomic functions and their implications in various diseases, including Parkinson's and Alzheimer's. Despite the proposal of several computational models for identifying sumoylation sites, their effectiveness could be improved by the limitations associated with conventional learning methodologies. In this study, we introduce pseudo-position-specific scoring matrix (PsePSSM), a robust computational model designed for accurately predicting sumoylation sites using an optimized deep learning algorithm and efficient feature extraction techniques. Moreover, to streamline computational processes and eliminate irrelevant and noisy features, sequential forward selection using a support vector machine (SFS-SVM) is implemented to identify optimal features. The multi-layer Deep Neural Network (DNN) is a robust classifier, facilitating precise sumoylation site prediction. We meticulously assess the performance of PSSM-Sumo through a tenfold cross-validation approach, employing various statistical metrics such as the Matthews Correlation Coefficient (MCC), accuracy, sensitivity, specificity, and the Area under the ROC Curve (AUC). Comparative analyses reveal that PSSM-Sumo achieves an exceptional average prediction accuracy of 98.71%, surpassing existing models. The robustness and accuracy of the proposed model position it as a promising tool for advancing drug discovery and the diagnosis of diverse diseases linked to sumoylation sites.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Rare copy number variant analysis in case-control studies using snp array data: a scalable and automated data analysis pipeline. Mining contextually meaningful subgraphs from a vertex-attributed graph. Robust double machine learning model with application to omics data. A mapping-free natural language processing-based technique for sequence search in nanopore long-reads. Closha 2.0: a bio-workflow design system for massive genome data analysis on high performance cluster infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1