{"title":"基于超声成像和临床特征的儿童和青少年甲状腺乳头状癌侧淋巴结转移预测模型:一项回顾性研究。","authors":"Shiyang Lin, Yuan Zhong, Yidi Lin, Guangjian Liu","doi":"10.1186/s12880-024-01384-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The presence of lateral lymph node metastases (LNM) in paediatric patients with papillary thyroid cancer (PTC) is an independent risk factor for recurrence. We aimed to identify risk factors and establish a prediction model for lateral LNM before surgery in children and adolescents with PTC.</p><p><strong>Methods: </strong>We developed a prediction model based on data obtained from 63 minors with PTC between January 2014 and June 2023. We collected and analysed clinical factors, ultrasound (US) features of the primary tumour, and pathology records of the patients. Multivariate logistic regression analysis was used to determine independent predictors and build a prediction model. We evaluated the predictive performance of risk factors and the prediction model using the area under the receiver operating characteristic (ROC) curve. We assessed the clinical usefulness of the predicting model using decision curve analysis.</p><p><strong>Results: </strong>Among the minors with PTC, 21 had lateral LNM (33.3%). Logistic regression revealed that independent risk factors for lateral LNM were multifocality, tumour size, sex, and age. The area under the ROC curve for multifocality, tumour size, sex, and age was 0.62 (p = 0.049), 0.61 (p = 0.023), 0.66 (p = 0.003), and 0.58 (p = 0.013), respectively. Compared to a single risk factor, the combined predictors had a significantly higher area under the ROC curve (0.842), with a sensitivity and specificity of 71.4% and 81.0%, respectively (cutoff value = 0.524). Decision curve analysis showed that the prediction model was clinically useful, with threshold probabilities between 2% and 99%.</p><p><strong>Conclusions: </strong>The independent risk factors for lateral LNM in paediatric PTC patients were multifocality and tumour size on US imaging, as well as sex and age. Our model outperformed US imaging and clinical features alone in predicting the status of lateral LNM.</p>","PeriodicalId":9020,"journal":{"name":"BMC Medical Imaging","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361114/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prediction model for lateral lymph node metastasis of papillary thyroid carcinoma in children and adolescents based on ultrasound imaging and clinical features: a retrospective study.\",\"authors\":\"Shiyang Lin, Yuan Zhong, Yidi Lin, Guangjian Liu\",\"doi\":\"10.1186/s12880-024-01384-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The presence of lateral lymph node metastases (LNM) in paediatric patients with papillary thyroid cancer (PTC) is an independent risk factor for recurrence. We aimed to identify risk factors and establish a prediction model for lateral LNM before surgery in children and adolescents with PTC.</p><p><strong>Methods: </strong>We developed a prediction model based on data obtained from 63 minors with PTC between January 2014 and June 2023. We collected and analysed clinical factors, ultrasound (US) features of the primary tumour, and pathology records of the patients. Multivariate logistic regression analysis was used to determine independent predictors and build a prediction model. We evaluated the predictive performance of risk factors and the prediction model using the area under the receiver operating characteristic (ROC) curve. We assessed the clinical usefulness of the predicting model using decision curve analysis.</p><p><strong>Results: </strong>Among the minors with PTC, 21 had lateral LNM (33.3%). Logistic regression revealed that independent risk factors for lateral LNM were multifocality, tumour size, sex, and age. The area under the ROC curve for multifocality, tumour size, sex, and age was 0.62 (p = 0.049), 0.61 (p = 0.023), 0.66 (p = 0.003), and 0.58 (p = 0.013), respectively. Compared to a single risk factor, the combined predictors had a significantly higher area under the ROC curve (0.842), with a sensitivity and specificity of 71.4% and 81.0%, respectively (cutoff value = 0.524). Decision curve analysis showed that the prediction model was clinically useful, with threshold probabilities between 2% and 99%.</p><p><strong>Conclusions: </strong>The independent risk factors for lateral LNM in paediatric PTC patients were multifocality and tumour size on US imaging, as well as sex and age. Our model outperformed US imaging and clinical features alone in predicting the status of lateral LNM.</p>\",\"PeriodicalId\":9020,\"journal\":{\"name\":\"BMC Medical Imaging\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11361114/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12880-024-01384-4\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12880-024-01384-4","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Prediction model for lateral lymph node metastasis of papillary thyroid carcinoma in children and adolescents based on ultrasound imaging and clinical features: a retrospective study.
Background: The presence of lateral lymph node metastases (LNM) in paediatric patients with papillary thyroid cancer (PTC) is an independent risk factor for recurrence. We aimed to identify risk factors and establish a prediction model for lateral LNM before surgery in children and adolescents with PTC.
Methods: We developed a prediction model based on data obtained from 63 minors with PTC between January 2014 and June 2023. We collected and analysed clinical factors, ultrasound (US) features of the primary tumour, and pathology records of the patients. Multivariate logistic regression analysis was used to determine independent predictors and build a prediction model. We evaluated the predictive performance of risk factors and the prediction model using the area under the receiver operating characteristic (ROC) curve. We assessed the clinical usefulness of the predicting model using decision curve analysis.
Results: Among the minors with PTC, 21 had lateral LNM (33.3%). Logistic regression revealed that independent risk factors for lateral LNM were multifocality, tumour size, sex, and age. The area under the ROC curve for multifocality, tumour size, sex, and age was 0.62 (p = 0.049), 0.61 (p = 0.023), 0.66 (p = 0.003), and 0.58 (p = 0.013), respectively. Compared to a single risk factor, the combined predictors had a significantly higher area under the ROC curve (0.842), with a sensitivity and specificity of 71.4% and 81.0%, respectively (cutoff value = 0.524). Decision curve analysis showed that the prediction model was clinically useful, with threshold probabilities between 2% and 99%.
Conclusions: The independent risk factors for lateral LNM in paediatric PTC patients were multifocality and tumour size on US imaging, as well as sex and age. Our model outperformed US imaging and clinical features alone in predicting the status of lateral LNM.
期刊介绍:
BMC Medical Imaging is an open access journal publishing original peer-reviewed research articles in the development, evaluation, and use of imaging techniques and image processing tools to diagnose and manage disease.