Ariful Islam, Michelle Wille, Mohammed Ziaur Rahman, Ashleigh F Porter, Mohammed Enayet Hosaain, Mohammad Mahmudul Hassan, Tahmina Shirin, Jonathan H Epstein, Marcel Klaassen
{"title":"孟加拉国高致病性禽流感病毒的系统动力学,确定家鸭为扩增宿主库。","authors":"Ariful Islam, Michelle Wille, Mohammed Ziaur Rahman, Ashleigh F Porter, Mohammed Enayet Hosaain, Mohammad Mahmudul Hassan, Tahmina Shirin, Jonathan H Epstein, Marcel Klaassen","doi":"10.1080/22221751.2024.2399268","DOIUrl":null,"url":null,"abstract":"<p><p>High pathogenicity avian influenza (HPAI) virus H5N1 first emerged in Bangladesh in 2007. Despite the use of vaccines in chickens since 2012 to control HPAI, HPAI H5Nx viruses have continued to infect poultry, and wild birds, resulting in notable mass mortalities in house crows (<i>Corvus splendens</i>). The first HPAI H5Nx viruses in Bangladesh belonged to clade 2.2.2, followed by clade 2.3.4.2 and 2.3.2.1 viruses in 2011. After the implementation of chicken vaccination in 2012, these viruses were mostly replaced by clade 2.3.2.1a viruses and more recently clade 2.3.4.4b and h viruses. In this study, we reconstruct the phylogenetic history of HPAI H5Nx viruses in Bangladesh to evaluate the role of major host species in the maintenance and evolution of HPAI H5Nx virus in Bangladesh and reveal the role of heavily impacted crows in virus epidemiology. Epizootic waves caused by HPAI H5N1 and H5N6 viruses amongst house crows occurred annually in winter. Bayesian phylodynamic analysis of clade 2.3.2.1a revealed frequent bidirectional viral transitions between domestic ducks, chickens, and house crows that was markedly skewed towards ducks; domestic ducks might be the source, or reservoir, of HPAI H5Nx in Bangladesh, as the number of viral transitions from ducks to chickens and house crows was by far more numerous than the other transitions. Our results suggest viral circulation in domestic birds despite vaccination, with crow epizootics acting as a sentinel. The vaccination strategy needs to be updated to use more effective vaccinations, assess vaccine efficacy, and extension of vaccination to domestic ducks, the key reservoir.</p>","PeriodicalId":11602,"journal":{"name":"Emerging Microbes & Infections","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389634/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phylodynamics of high pathogenicity avian influenza virus in Bangladesh identifying domestic ducks as the amplifying host reservoir.\",\"authors\":\"Ariful Islam, Michelle Wille, Mohammed Ziaur Rahman, Ashleigh F Porter, Mohammed Enayet Hosaain, Mohammad Mahmudul Hassan, Tahmina Shirin, Jonathan H Epstein, Marcel Klaassen\",\"doi\":\"10.1080/22221751.2024.2399268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>High pathogenicity avian influenza (HPAI) virus H5N1 first emerged in Bangladesh in 2007. Despite the use of vaccines in chickens since 2012 to control HPAI, HPAI H5Nx viruses have continued to infect poultry, and wild birds, resulting in notable mass mortalities in house crows (<i>Corvus splendens</i>). The first HPAI H5Nx viruses in Bangladesh belonged to clade 2.2.2, followed by clade 2.3.4.2 and 2.3.2.1 viruses in 2011. After the implementation of chicken vaccination in 2012, these viruses were mostly replaced by clade 2.3.2.1a viruses and more recently clade 2.3.4.4b and h viruses. In this study, we reconstruct the phylogenetic history of HPAI H5Nx viruses in Bangladesh to evaluate the role of major host species in the maintenance and evolution of HPAI H5Nx virus in Bangladesh and reveal the role of heavily impacted crows in virus epidemiology. Epizootic waves caused by HPAI H5N1 and H5N6 viruses amongst house crows occurred annually in winter. Bayesian phylodynamic analysis of clade 2.3.2.1a revealed frequent bidirectional viral transitions between domestic ducks, chickens, and house crows that was markedly skewed towards ducks; domestic ducks might be the source, or reservoir, of HPAI H5Nx in Bangladesh, as the number of viral transitions from ducks to chickens and house crows was by far more numerous than the other transitions. Our results suggest viral circulation in domestic birds despite vaccination, with crow epizootics acting as a sentinel. The vaccination strategy needs to be updated to use more effective vaccinations, assess vaccine efficacy, and extension of vaccination to domestic ducks, the key reservoir.</p>\",\"PeriodicalId\":11602,\"journal\":{\"name\":\"Emerging Microbes & Infections\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11389634/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Emerging Microbes & Infections\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/22221751.2024.2399268\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emerging Microbes & Infections","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/22221751.2024.2399268","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Phylodynamics of high pathogenicity avian influenza virus in Bangladesh identifying domestic ducks as the amplifying host reservoir.
High pathogenicity avian influenza (HPAI) virus H5N1 first emerged in Bangladesh in 2007. Despite the use of vaccines in chickens since 2012 to control HPAI, HPAI H5Nx viruses have continued to infect poultry, and wild birds, resulting in notable mass mortalities in house crows (Corvus splendens). The first HPAI H5Nx viruses in Bangladesh belonged to clade 2.2.2, followed by clade 2.3.4.2 and 2.3.2.1 viruses in 2011. After the implementation of chicken vaccination in 2012, these viruses were mostly replaced by clade 2.3.2.1a viruses and more recently clade 2.3.4.4b and h viruses. In this study, we reconstruct the phylogenetic history of HPAI H5Nx viruses in Bangladesh to evaluate the role of major host species in the maintenance and evolution of HPAI H5Nx virus in Bangladesh and reveal the role of heavily impacted crows in virus epidemiology. Epizootic waves caused by HPAI H5N1 and H5N6 viruses amongst house crows occurred annually in winter. Bayesian phylodynamic analysis of clade 2.3.2.1a revealed frequent bidirectional viral transitions between domestic ducks, chickens, and house crows that was markedly skewed towards ducks; domestic ducks might be the source, or reservoir, of HPAI H5Nx in Bangladesh, as the number of viral transitions from ducks to chickens and house crows was by far more numerous than the other transitions. Our results suggest viral circulation in domestic birds despite vaccination, with crow epizootics acting as a sentinel. The vaccination strategy needs to be updated to use more effective vaccinations, assess vaccine efficacy, and extension of vaccination to domestic ducks, the key reservoir.
期刊介绍:
Emerging Microbes & Infections is a peer-reviewed, open-access journal dedicated to publishing research at the intersection of emerging immunology and microbiology viruses.
The journal's mission is to share information on microbes and infections, particularly those gaining significance in both biological and clinical realms due to increased pathogenic frequency. Emerging Microbes & Infections is committed to bridging the scientific gap between developed and developing countries.
This journal addresses topics of critical biological and clinical importance, including but not limited to:
- Epidemic surveillance
- Clinical manifestations
- Diagnosis and management
- Cellular and molecular pathogenesis
- Innate and acquired immune responses between emerging microbes and their hosts
- Drug discovery
- Vaccine development research
Emerging Microbes & Infections invites submissions of original research articles, review articles, letters, and commentaries, fostering a platform for the dissemination of impactful research in the field.