大型语言模型在肺-RADS 相关问题上的性能比较。

IF 3.2 Q2 ONCOLOGY JCO Global Oncology Pub Date : 2024-08-01 DOI:10.1200/GO.24.00200
Eren Çamur, Turay Cesur, Yasin Celal Güneş
{"title":"大型语言模型在肺-RADS 相关问题上的性能比较。","authors":"Eren Çamur, Turay Cesur, Yasin Celal Güneş","doi":"10.1200/GO.24.00200","DOIUrl":null,"url":null,"abstract":"<p><p>This study evaluates LLM integration in interpreting Lung-RADS for lung cancer screening, highlighting their innovative role in enhancing radiological practice. Our findings reveal that Claude 3 Opus and Perplexity achieved a 96% accuracy rate, outperforming other models.</p>","PeriodicalId":14806,"journal":{"name":"JCO Global Oncology","volume":"10 ","pages":"e2400200"},"PeriodicalIF":3.2000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparison of Performance of Large Language Models on Lung-RADS Related Questions.\",\"authors\":\"Eren Çamur, Turay Cesur, Yasin Celal Güneş\",\"doi\":\"10.1200/GO.24.00200\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study evaluates LLM integration in interpreting Lung-RADS for lung cancer screening, highlighting their innovative role in enhancing radiological practice. Our findings reveal that Claude 3 Opus and Perplexity achieved a 96% accuracy rate, outperforming other models.</p>\",\"PeriodicalId\":14806,\"journal\":{\"name\":\"JCO Global Oncology\",\"volume\":\"10 \",\"pages\":\"e2400200\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JCO Global Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1200/GO.24.00200\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JCO Global Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1200/GO.24.00200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究评估了 LLM 集成在肺癌筛查 Lung-RADS 解释中的情况,突出了其在提高放射学实践中的创新作用。我们的研究结果表明,Claude 3 Opus 和 Perplexity 的准确率达到 96%,优于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of Performance of Large Language Models on Lung-RADS Related Questions.

This study evaluates LLM integration in interpreting Lung-RADS for lung cancer screening, highlighting their innovative role in enhancing radiological practice. Our findings reveal that Claude 3 Opus and Perplexity achieved a 96% accuracy rate, outperforming other models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
JCO Global Oncology
JCO Global Oncology Medicine-Oncology
CiteScore
6.70
自引率
6.70%
发文量
310
审稿时长
7 weeks
期刊最新文献
Beliefs on Causes of Cancer in the General Population, and the Association With Risk Perception and Lifestyle in a Multiethnic Setting. Efficacy and Safety of Biosimilar Cetuximab Versus Innovator Cetuximab in Indian Patients With Head and Neck Cancer: A Multicenter, Randomized, Double-Blind, Phase III Trial. Evaluation of the Stronger Together Peer Mentoring Model Among Patients With Breast and Gynecologic Cancer in Viet Nam. Germline Genetic Susceptibility Testing Among Emirati Nationals at Risk for Hereditary Breast and Ovarian Cancer Syndrome. Health-Related Quality of Life and Financial Burden in Ethiopian Patients With Chronic Myeloid Leukemia Receiving Tyrosine Kinase Inhibitors: A Cross-Sectional Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1