利用数字乳腺 X 射线照相术中的 X 射线曝光条件,开发和验证乳腺体积密度推测模型。

IF 2.6 4区 医学 Q2 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Medical & Biological Engineering & Computing Pub Date : 2025-01-01 Epub Date: 2024-09-02 DOI:10.1007/s11517-024-03186-w
Mika Yamamuro, Yoshiyuki Asai, Takahiro Yamada, Yuichi Kimura, Kazunari Ishii, Yohan Kondo
{"title":"利用数字乳腺 X 射线照相术中的 X 射线曝光条件,开发和验证乳腺体积密度推测模型。","authors":"Mika Yamamuro, Yoshiyuki Asai, Takahiro Yamada, Yuichi Kimura, Kazunari Ishii, Yohan Kondo","doi":"10.1007/s11517-024-03186-w","DOIUrl":null,"url":null,"abstract":"<p><p>The use of breast density as a biomarker for breast cancer treatment has not been well established owing to the difficulty in measuring time-series changes in breast density. In this study, we developed a surmising model for breast density using prior mammograms through a multiple regression analysis, enabling a time series analysis of breast density. We acquired 1320 mediolateral oblique view mammograms to construct the surmising model using multiple regression analysis. The dependent variable was the breast density of the mammary gland region segmented by certified radiological technologists, and independent variables included the compressed breast thickness (CBT), exposure current times exposure second (mAs), tube voltage (kV), and patients' age. The coefficient of determination of the surmising model was 0.868. After applying the model, the correlation coefficients of the three groups based on the CBT (thin group, 18-36 mm; standard group, 38-46 mm; and thick group, 48-78 mm) were 0.913, 0.945, and 0.867, respectively, suggesting that the thick breast group had a significantly low correlation coefficient (p = 0.00231). In conclusion, breast density can be accurately surmised using the CBT, mAs, tube voltage, and patients' age, even in the absence of a mammogram image.</p>","PeriodicalId":49840,"journal":{"name":"Medical & Biological Engineering & Computing","volume":" ","pages":"169-179"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and validation of the surmising model for volumetric breast density using X-ray exposure conditions in digital mammography.\",\"authors\":\"Mika Yamamuro, Yoshiyuki Asai, Takahiro Yamada, Yuichi Kimura, Kazunari Ishii, Yohan Kondo\",\"doi\":\"10.1007/s11517-024-03186-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The use of breast density as a biomarker for breast cancer treatment has not been well established owing to the difficulty in measuring time-series changes in breast density. In this study, we developed a surmising model for breast density using prior mammograms through a multiple regression analysis, enabling a time series analysis of breast density. We acquired 1320 mediolateral oblique view mammograms to construct the surmising model using multiple regression analysis. The dependent variable was the breast density of the mammary gland region segmented by certified radiological technologists, and independent variables included the compressed breast thickness (CBT), exposure current times exposure second (mAs), tube voltage (kV), and patients' age. The coefficient of determination of the surmising model was 0.868. After applying the model, the correlation coefficients of the three groups based on the CBT (thin group, 18-36 mm; standard group, 38-46 mm; and thick group, 48-78 mm) were 0.913, 0.945, and 0.867, respectively, suggesting that the thick breast group had a significantly low correlation coefficient (p = 0.00231). In conclusion, breast density can be accurately surmised using the CBT, mAs, tube voltage, and patients' age, even in the absence of a mammogram image.</p>\",\"PeriodicalId\":49840,\"journal\":{\"name\":\"Medical & Biological Engineering & Computing\",\"volume\":\" \",\"pages\":\"169-179\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Biological Engineering & Computing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11517-024-03186-w\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Biological Engineering & Computing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11517-024-03186-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

由于难以测量乳腺密度的时间序列变化,因此将乳腺密度作为乳腺癌治疗的生物标志物尚未得到很好的证实。在这项研究中,我们通过多元回归分析,利用先前的乳房X光照片建立了乳房密度推测模型,从而实现了乳房密度的时间序列分析。我们采集了 1320 张内侧斜视乳房 X 光照片,利用多元回归分析建立了推测模型。因变量为经认证的放射技师分割的乳腺区域的乳腺密度,自变量包括压缩乳腺厚度(CBT)、曝光电流乘以曝光秒(mAs)、管电压(kV)和患者年龄。推测模型的决定系数为 0.868。应用该模型后,基于 CBT 的三组(薄组,18-36 毫米;标准组,38-46 毫米;厚组,48-78 毫米)的相关系数分别为 0.913、0.945 和 0.867,表明厚乳房组的相关系数明显较低(p = 0.00231)。总之,即使没有乳房 X 光图像,也可以通过 CBT、mAs、管电压和患者年龄准确推测乳房密度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development and validation of the surmising model for volumetric breast density using X-ray exposure conditions in digital mammography.

The use of breast density as a biomarker for breast cancer treatment has not been well established owing to the difficulty in measuring time-series changes in breast density. In this study, we developed a surmising model for breast density using prior mammograms through a multiple regression analysis, enabling a time series analysis of breast density. We acquired 1320 mediolateral oblique view mammograms to construct the surmising model using multiple regression analysis. The dependent variable was the breast density of the mammary gland region segmented by certified radiological technologists, and independent variables included the compressed breast thickness (CBT), exposure current times exposure second (mAs), tube voltage (kV), and patients' age. The coefficient of determination of the surmising model was 0.868. After applying the model, the correlation coefficients of the three groups based on the CBT (thin group, 18-36 mm; standard group, 38-46 mm; and thick group, 48-78 mm) were 0.913, 0.945, and 0.867, respectively, suggesting that the thick breast group had a significantly low correlation coefficient (p = 0.00231). In conclusion, breast density can be accurately surmised using the CBT, mAs, tube voltage, and patients' age, even in the absence of a mammogram image.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical & Biological Engineering & Computing
Medical & Biological Engineering & Computing 医学-工程:生物医学
CiteScore
6.00
自引率
3.10%
发文量
249
审稿时长
3.5 months
期刊介绍: Founded in 1963, Medical & Biological Engineering & Computing (MBEC) continues to serve the biomedical engineering community, covering the entire spectrum of biomedical and clinical engineering. The journal presents exciting and vital experimental and theoretical developments in biomedical science and technology, and reports on advances in computer-based methodologies in these multidisciplinary subjects. The journal also incorporates new and evolving technologies including cellular engineering and molecular imaging. MBEC publishes original research articles as well as reviews and technical notes. Its Rapid Communications category focuses on material of immediate value to the readership, while the Controversies section provides a forum to exchange views on selected issues, stimulating a vigorous and informed debate in this exciting and high profile field. MBEC is an official journal of the International Federation of Medical and Biological Engineering (IFMBE).
期刊最新文献
LGENet: disentangle anatomy and pathology features for late gadolinium enhancement image segmentation. M4S-Net: a motion-enhanced shape-aware semi-supervised network for echocardiography sequence segmentation. Deep learning for retinal vessel segmentation: a systematic review of techniques and applications. TongueTransUNet: toward effective tongue contour segmentation using well-managed dataset. Drug repositioning based on mutual information for the treatment of Alzheimer's disease patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1