数据科学的文化构建:定量工作的定性思想。

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers in Big Data Pub Date : 2024-08-14 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1287442
Philipp Brandt
{"title":"数据科学的文化构建:定量工作的定性思想。","authors":"Philipp Brandt","doi":"10.3389/fdata.2024.1287442","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>\"Data scientists\" quickly became ubiquitous, often infamously so, but they have struggled with the ambiguity of their novel role. This article studies data science's collective definition on Twitter.</p><p><strong>Methods: </strong>The analysis responds to the challenges of studying an emergent case with unclear boundaries and substance through a cultural perspective and complementary datasets ranging from 1,025 to 752,815 tweets. It brings together relations between accounts that tweeted about data science, the hashtags they used, indicating purposes, and the topics they discussed.</p><p><strong>Results: </strong>The first results reproduce familiar commercial and technical motives. Additional results reveal concerns with new practical and ethical standards as a distinctive motive for constructing data science.</p><p><strong>Discussion: </strong>The article provides a sensibility for local meaning in usually abstract datasets and a heuristic for navigating increasingly abundant datasets toward surprising insights. For data scientists, it offers a guide for positioning themselves vis-à-vis others to navigate their professional future.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1287442"},"PeriodicalIF":2.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349665/pdf/","citationCount":"0","resultStr":"{\"title\":\"Data science's cultural construction: qualitative ideas for quantitative work.\",\"authors\":\"Philipp Brandt\",\"doi\":\"10.3389/fdata.2024.1287442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>\\\"Data scientists\\\" quickly became ubiquitous, often infamously so, but they have struggled with the ambiguity of their novel role. This article studies data science's collective definition on Twitter.</p><p><strong>Methods: </strong>The analysis responds to the challenges of studying an emergent case with unclear boundaries and substance through a cultural perspective and complementary datasets ranging from 1,025 to 752,815 tweets. It brings together relations between accounts that tweeted about data science, the hashtags they used, indicating purposes, and the topics they discussed.</p><p><strong>Results: </strong>The first results reproduce familiar commercial and technical motives. Additional results reveal concerns with new practical and ethical standards as a distinctive motive for constructing data science.</p><p><strong>Discussion: </strong>The article provides a sensibility for local meaning in usually abstract datasets and a heuristic for navigating increasingly abundant datasets toward surprising insights. For data scientists, it offers a guide for positioning themselves vis-à-vis others to navigate their professional future.</p>\",\"PeriodicalId\":52859,\"journal\":{\"name\":\"Frontiers in Big Data\",\"volume\":\"7 \",\"pages\":\"1287442\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11349665/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Big Data\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fdata.2024.1287442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1287442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

导言:"数据科学家 "很快就变得无处不在,而且常常臭名昭著,但他们一直在为新角色的模糊性而挣扎。本文研究了推特上对数据科学的集体定义:分析方法:本文通过文化视角和 1,025 至 752,815 条推文的互补数据集,应对了研究边界不清、内容不明的新兴案例所面临的挑战。它汇集了在推特上谈论数据科学的账户之间的关系、他们使用的标签、表明的目的以及他们讨论的主题:第一批结果再现了人们熟悉的商业和技术动机。其他结果显示,对新的实用和道德标准的关注是构建数据科学的一个独特动机:这篇文章为通常抽象的数据集提供了局部意义的感性认识,也为浏览日益丰富的数据集以获得惊人的洞察力提供了启发。对于数据科学家来说,这篇文章为他们提供了一个指南,帮助他们定位自己与他人的关系,从而为自己的职业未来导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data science's cultural construction: qualitative ideas for quantitative work.

Introduction: "Data scientists" quickly became ubiquitous, often infamously so, but they have struggled with the ambiguity of their novel role. This article studies data science's collective definition on Twitter.

Methods: The analysis responds to the challenges of studying an emergent case with unclear boundaries and substance through a cultural perspective and complementary datasets ranging from 1,025 to 752,815 tweets. It brings together relations between accounts that tweeted about data science, the hashtags they used, indicating purposes, and the topics they discussed.

Results: The first results reproduce familiar commercial and technical motives. Additional results reveal concerns with new practical and ethical standards as a distinctive motive for constructing data science.

Discussion: The article provides a sensibility for local meaning in usually abstract datasets and a heuristic for navigating increasingly abundant datasets toward surprising insights. For data scientists, it offers a guide for positioning themselves vis-à-vis others to navigate their professional future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
期刊最新文献
Big data analytics and AI as success factors for online video streaming platforms. Editorial: Visualizing big culture and history data. On explaining recommendations with Large Language Models: a review. Enhancing smart home environments: a novel pattern recognition approach to ambient acoustic event detection and localization. Balancing act: Europeans' privacy calculus and security concerns in online CSAM detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1