On explaining recommendations with Large Language Models: a review.

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers in Big Data Pub Date : 2025-01-27 eCollection Date: 2024-01-01 DOI:10.3389/fdata.2024.1505284
Alan Said
{"title":"On explaining recommendations with Large Language Models: a review.","authors":"Alan Said","doi":"10.3389/fdata.2024.1505284","DOIUrl":null,"url":null,"abstract":"<p><p>The rise of Large Language Models (LLMs), such as LLaMA and ChatGPT, has opened new opportunities for enhancing recommender systems through improved explainability. This paper provides a systematic literature review focused on leveraging LLMs to generate explanations for recommendations-a critical aspect for fostering transparency and user trust. We conducted a comprehensive search within the ACM Guide to Computing Literature, covering publications from the launch of ChatGPT (November 2022) to the present (November 2024). Our search yielded 232 articles, but after applying inclusion criteria, only six were identified as directly addressing the use of LLMs in explaining recommendations. This scarcity highlights that, despite the rise of LLMs, their application in explainable recommender systems is still in an early stage. We analyze these select studies to understand current methodologies, identify challenges, and suggest directions for future research. Our findings underscore the potential of LLMs improving explanations of recommender systems and encourage the development of more transparent and user-centric recommendation explanation solutions.</p>","PeriodicalId":52859,"journal":{"name":"Frontiers in Big Data","volume":"7 ","pages":"1505284"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11808143/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Big Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdata.2024.1505284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The rise of Large Language Models (LLMs), such as LLaMA and ChatGPT, has opened new opportunities for enhancing recommender systems through improved explainability. This paper provides a systematic literature review focused on leveraging LLMs to generate explanations for recommendations-a critical aspect for fostering transparency and user trust. We conducted a comprehensive search within the ACM Guide to Computing Literature, covering publications from the launch of ChatGPT (November 2022) to the present (November 2024). Our search yielded 232 articles, but after applying inclusion criteria, only six were identified as directly addressing the use of LLMs in explaining recommendations. This scarcity highlights that, despite the rise of LLMs, their application in explainable recommender systems is still in an early stage. We analyze these select studies to understand current methodologies, identify challenges, and suggest directions for future research. Our findings underscore the potential of LLMs improving explanations of recommender systems and encourage the development of more transparent and user-centric recommendation explanation solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
3.20%
发文量
122
审稿时长
13 weeks
期刊最新文献
On explaining recommendations with Large Language Models: a review. Enhancing smart home environments: a novel pattern recognition approach to ambient acoustic event detection and localization. Balancing act: Europeans' privacy calculus and security concerns in online CSAM detection. A scalable tool for analyzing genomic variants of humans using knowledge graphs and graph machine learning. Artificial intelligence for the detection of acute myeloid leukemia from microscopic blood images; a systematic review and meta-analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1