{"title":"机器人经眶手术的可行性。","authors":"Min Ho Lee, Limin Xiao, Juan C Fernandez-Miranda","doi":"10.1227/ons.0000000000001321","DOIUrl":null,"url":null,"abstract":"<p><strong>Background and objectives: </strong>The transorbital approach (TOA) facilitates access to pathologies lateral to the optic nerve, a region that is difficult to access with an endonasal approach. In this study, we sought to investigate the feasibility of robotic-assisted surgery in lateral TOA.</p><p><strong>Methods: </strong>Six colored-silicon-injected human postmortem heads were prepared for dissection. The DaVinci Xi model was used with a 0-degree camera, 8 mm in diameter. A black diamond microforceps with an 8-mm diameter and 10-mm jaw length was used. The entry point of V1 (superior orbital fissure), V3 (foramen ovale), and posterior root of the trigeminal ganglion were chosen as the surgical targets. The length from the entry opening to each target point was measured. The angles formed between pairs of target points were measured to obtain the horizontal angle (root of the trigeminal ganglion-entry-V1) and the vertical angle (root of the trigeminal ganglion-entry-V3).</p><p><strong>Results: </strong>Dissection was performed on 12 sides (6 specimens). The median distance from the entry point was 55 mm (range 50-58 mm) to the entry point of V1 (superior orbital fissure), 65 mm (range 57-70 mm) to the entry point of V3 (foramen ovale), and 76 mm (range 70-87 mm) to the root of the trigeminal ganglion. Meanwhile, the median of surgical angle between the entry point and the target was 19.1° (range 11.8-30.4°) on the horizontal angle and 16.5° (range 6.2-21.6°) on the vertical angle.</p><p><strong>Conclusion: </strong>This study found that application of lateral TOA in robotic-assisted surgery is premature because of the large size of the tool. However, although the entrance in lateral TOA is narrow, the internal surgical space is wide; this offers potential for design of appropriate surgical tools to allow increase tool usage.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of Robotic Transorbital Surgery.\",\"authors\":\"Min Ho Lee, Limin Xiao, Juan C Fernandez-Miranda\",\"doi\":\"10.1227/ons.0000000000001321\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background and objectives: </strong>The transorbital approach (TOA) facilitates access to pathologies lateral to the optic nerve, a region that is difficult to access with an endonasal approach. In this study, we sought to investigate the feasibility of robotic-assisted surgery in lateral TOA.</p><p><strong>Methods: </strong>Six colored-silicon-injected human postmortem heads were prepared for dissection. The DaVinci Xi model was used with a 0-degree camera, 8 mm in diameter. A black diamond microforceps with an 8-mm diameter and 10-mm jaw length was used. The entry point of V1 (superior orbital fissure), V3 (foramen ovale), and posterior root of the trigeminal ganglion were chosen as the surgical targets. The length from the entry opening to each target point was measured. The angles formed between pairs of target points were measured to obtain the horizontal angle (root of the trigeminal ganglion-entry-V1) and the vertical angle (root of the trigeminal ganglion-entry-V3).</p><p><strong>Results: </strong>Dissection was performed on 12 sides (6 specimens). The median distance from the entry point was 55 mm (range 50-58 mm) to the entry point of V1 (superior orbital fissure), 65 mm (range 57-70 mm) to the entry point of V3 (foramen ovale), and 76 mm (range 70-87 mm) to the root of the trigeminal ganglion. Meanwhile, the median of surgical angle between the entry point and the target was 19.1° (range 11.8-30.4°) on the horizontal angle and 16.5° (range 6.2-21.6°) on the vertical angle.</p><p><strong>Conclusion: </strong>This study found that application of lateral TOA in robotic-assisted surgery is premature because of the large size of the tool. However, although the entrance in lateral TOA is narrow, the internal surgical space is wide; this offers potential for design of appropriate surgical tools to allow increase tool usage.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1227/ons.0000000000001321\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1227/ons.0000000000001321","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Background and objectives: The transorbital approach (TOA) facilitates access to pathologies lateral to the optic nerve, a region that is difficult to access with an endonasal approach. In this study, we sought to investigate the feasibility of robotic-assisted surgery in lateral TOA.
Methods: Six colored-silicon-injected human postmortem heads were prepared for dissection. The DaVinci Xi model was used with a 0-degree camera, 8 mm in diameter. A black diamond microforceps with an 8-mm diameter and 10-mm jaw length was used. The entry point of V1 (superior orbital fissure), V3 (foramen ovale), and posterior root of the trigeminal ganglion were chosen as the surgical targets. The length from the entry opening to each target point was measured. The angles formed between pairs of target points were measured to obtain the horizontal angle (root of the trigeminal ganglion-entry-V1) and the vertical angle (root of the trigeminal ganglion-entry-V3).
Results: Dissection was performed on 12 sides (6 specimens). The median distance from the entry point was 55 mm (range 50-58 mm) to the entry point of V1 (superior orbital fissure), 65 mm (range 57-70 mm) to the entry point of V3 (foramen ovale), and 76 mm (range 70-87 mm) to the root of the trigeminal ganglion. Meanwhile, the median of surgical angle between the entry point and the target was 19.1° (range 11.8-30.4°) on the horizontal angle and 16.5° (range 6.2-21.6°) on the vertical angle.
Conclusion: This study found that application of lateral TOA in robotic-assisted surgery is premature because of the large size of the tool. However, although the entrance in lateral TOA is narrow, the internal surgical space is wide; this offers potential for design of appropriate surgical tools to allow increase tool usage.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.