通过药物或靶点修饰对氨基糖苷类抗生素的抗性可实现全群落的抗虹吸防御。

microLife Pub Date : 2024-08-15 eCollection Date: 2024-01-01 DOI:10.1093/femsml/uqae015
Larissa Kever, Qian Zhang, Aël Hardy, Philipp Westhoff, Yi Yu, Julia Frunzke
{"title":"通过药物或靶点修饰对氨基糖苷类抗生素的抗性可实现全群落的抗虹吸防御。","authors":"Larissa Kever, Qian Zhang, Aël Hardy, Philipp Westhoff, Yi Yu, Julia Frunzke","doi":"10.1093/femsml/uqae015","DOIUrl":null,"url":null,"abstract":"<p><p>The ongoing arms race between bacteria and phages has forced bacteria to evolve a sophisticated set of antiphage defense mechanisms that constitute the bacterial immune system. In our previous study, we highlighted the antiphage properties of aminoglycoside antibiotics, which are naturally secreted by <i>Streptomyces</i>. Successful inhibition of phage infection was achieved by addition of pure compounds and supernatants from a natural producer strain emphasizing the potential for community-wide antiphage defense. However, given the dual functionality of these compounds, neighboring bacterial cells require resistance to the antibacterial activity of aminoglycosides to benefit from the protection they confer against phages. In this study, we tested a variety of different aminoglycoside resistance mechanisms acting via drug or target (16S rRNA) modification and demonstrated that they do not interfere with the antiphage properties of the molecules. Furthermore, we confirmed the antiphage impact of aminoglycosides in a community context by coculturing phage-susceptible, apramycin-resistant <i>Streptomyces venezuelae</i> with the apramycin-producing strain <i>Streptoalloteichus tenebrarius</i>. Given the prevalence of aminoglycoside resistance among natural bacterial isolates, this study highlights the ecological relevance of chemical defense via aminoglycosides at the community level.</p>","PeriodicalId":74189,"journal":{"name":"microLife","volume":"5 ","pages":"uqae015"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350373/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resistance against aminoglycoside antibiotics via drug or target modification enables community-wide antiphage defense.\",\"authors\":\"Larissa Kever, Qian Zhang, Aël Hardy, Philipp Westhoff, Yi Yu, Julia Frunzke\",\"doi\":\"10.1093/femsml/uqae015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The ongoing arms race between bacteria and phages has forced bacteria to evolve a sophisticated set of antiphage defense mechanisms that constitute the bacterial immune system. In our previous study, we highlighted the antiphage properties of aminoglycoside antibiotics, which are naturally secreted by <i>Streptomyces</i>. Successful inhibition of phage infection was achieved by addition of pure compounds and supernatants from a natural producer strain emphasizing the potential for community-wide antiphage defense. However, given the dual functionality of these compounds, neighboring bacterial cells require resistance to the antibacterial activity of aminoglycosides to benefit from the protection they confer against phages. In this study, we tested a variety of different aminoglycoside resistance mechanisms acting via drug or target (16S rRNA) modification and demonstrated that they do not interfere with the antiphage properties of the molecules. Furthermore, we confirmed the antiphage impact of aminoglycosides in a community context by coculturing phage-susceptible, apramycin-resistant <i>Streptomyces venezuelae</i> with the apramycin-producing strain <i>Streptoalloteichus tenebrarius</i>. Given the prevalence of aminoglycoside resistance among natural bacterial isolates, this study highlights the ecological relevance of chemical defense via aminoglycosides at the community level.</p>\",\"PeriodicalId\":74189,\"journal\":{\"name\":\"microLife\",\"volume\":\"5 \",\"pages\":\"uqae015\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11350373/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"microLife\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/femsml/uqae015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"microLife","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/femsml/uqae015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细菌与噬菌体之间持续不断的军备竞赛迫使细菌进化出一套复杂的抗噬菌体防御机制,这套机制构成了细菌免疫系统。在之前的研究中,我们强调了由链霉菌天然分泌的氨基糖苷类抗生素的抗噬菌体特性。通过添加来自天然生产菌株的纯化合物和上清液,我们成功地抑制了噬菌体的感染,强调了全群落抗噬菌体防御的潜力。然而,鉴于这些化合物的双重功能,邻近的细菌细胞需要对氨基糖苷类化合物的抗菌活性产生抗性,才能从它们对噬菌体的保护中获益。在这项研究中,我们测试了通过药物或靶标(16S rRNA)修饰作用的各种不同的氨基糖苷类抗性机制,结果表明它们不会干扰分子的抗噬菌体特性。此外,我们还通过将对噬菌体敏感、对阿普霉素耐药的委内瑞拉链霉菌与产生阿普霉素的菌株 Streptoalloteichus tenebrarius 进行共培养,证实了氨基糖苷类药物在群落环境中的抗噬菌体作用。鉴于氨基糖苷类药物耐药性在天然细菌分离物中的普遍存在,本研究强调了通过氨基糖苷类药物在群落水平上进行化学防御的生态相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Resistance against aminoglycoside antibiotics via drug or target modification enables community-wide antiphage defense.

The ongoing arms race between bacteria and phages has forced bacteria to evolve a sophisticated set of antiphage defense mechanisms that constitute the bacterial immune system. In our previous study, we highlighted the antiphage properties of aminoglycoside antibiotics, which are naturally secreted by Streptomyces. Successful inhibition of phage infection was achieved by addition of pure compounds and supernatants from a natural producer strain emphasizing the potential for community-wide antiphage defense. However, given the dual functionality of these compounds, neighboring bacterial cells require resistance to the antibacterial activity of aminoglycosides to benefit from the protection they confer against phages. In this study, we tested a variety of different aminoglycoside resistance mechanisms acting via drug or target (16S rRNA) modification and demonstrated that they do not interfere with the antiphage properties of the molecules. Furthermore, we confirmed the antiphage impact of aminoglycosides in a community context by coculturing phage-susceptible, apramycin-resistant Streptomyces venezuelae with the apramycin-producing strain Streptoalloteichus tenebrarius. Given the prevalence of aminoglycoside resistance among natural bacterial isolates, this study highlights the ecological relevance of chemical defense via aminoglycosides at the community level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.50
自引率
0.00%
发文量
0
期刊最新文献
Did organs precede organisms in the origin of life? Accessing microbial natural products of the past. Tracking the uptake of labelled host-derived extracellular vesicles by the human fungal pathogen Aspergillus fumigatus. Pyoverdine-antibiotic combination treatment: its efficacy and effects on resistance evolution in Escherichia coli. Compiling a versatile toolbox for inducible gene expression in Methanosarcina mazei.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1