{"title":"Rab5突变诱导的巨型内体上缺乏ATG9A和突触素脱混。","authors":"Jiyoung Choi, Yumei Wu, Daehun Park","doi":"10.1186/s13041-024-01132-3","DOIUrl":null,"url":null,"abstract":"<p><p>ATG9A is the only integral membrane protein among core autophagy-related (ATG) proteins. We previously found that ATG9A does not co-assemble into synaptophysin-positive vesicles, but rather, localizes to a distinct pool of vesicles within synapsin condensates in both fibroblasts and nerve terminals. The endocytic origin of these vesicles further suggests the existence of different intracellular sorting or segregation mechanisms for ATG9A and synaptophysin in cells. However, the precise underlying mechanism remains largely unknown. In this follow-up study, we investigated the endosomal localization of these two proteins by exploiting the advantages of a Rab5 mutant that induces the formation of enlarged endosomes. Notably, ATG9A and synaptophysin intermix perfectly and do not segregate on giant endosomes, indicating that the separation of these two proteins is not solely caused by the inherent properties of the proteins, but possibly by other unknown factors.</p>","PeriodicalId":18851,"journal":{"name":"Molecular Brain","volume":"17 1","pages":"63"},"PeriodicalIF":3.3000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367939/pdf/","citationCount":"0","resultStr":"{\"title\":\"Absence of ATG9A and synaptophysin demixing on Rab5 mutation-induced giant endosomes.\",\"authors\":\"Jiyoung Choi, Yumei Wu, Daehun Park\",\"doi\":\"10.1186/s13041-024-01132-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>ATG9A is the only integral membrane protein among core autophagy-related (ATG) proteins. We previously found that ATG9A does not co-assemble into synaptophysin-positive vesicles, but rather, localizes to a distinct pool of vesicles within synapsin condensates in both fibroblasts and nerve terminals. The endocytic origin of these vesicles further suggests the existence of different intracellular sorting or segregation mechanisms for ATG9A and synaptophysin in cells. However, the precise underlying mechanism remains largely unknown. In this follow-up study, we investigated the endosomal localization of these two proteins by exploiting the advantages of a Rab5 mutant that induces the formation of enlarged endosomes. Notably, ATG9A and synaptophysin intermix perfectly and do not segregate on giant endosomes, indicating that the separation of these two proteins is not solely caused by the inherent properties of the proteins, but possibly by other unknown factors.</p>\",\"PeriodicalId\":18851,\"journal\":{\"name\":\"Molecular Brain\",\"volume\":\"17 1\",\"pages\":\"63\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11367939/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Brain\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s13041-024-01132-3\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Brain","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13041-024-01132-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Absence of ATG9A and synaptophysin demixing on Rab5 mutation-induced giant endosomes.
ATG9A is the only integral membrane protein among core autophagy-related (ATG) proteins. We previously found that ATG9A does not co-assemble into synaptophysin-positive vesicles, but rather, localizes to a distinct pool of vesicles within synapsin condensates in both fibroblasts and nerve terminals. The endocytic origin of these vesicles further suggests the existence of different intracellular sorting or segregation mechanisms for ATG9A and synaptophysin in cells. However, the precise underlying mechanism remains largely unknown. In this follow-up study, we investigated the endosomal localization of these two proteins by exploiting the advantages of a Rab5 mutant that induces the formation of enlarged endosomes. Notably, ATG9A and synaptophysin intermix perfectly and do not segregate on giant endosomes, indicating that the separation of these two proteins is not solely caused by the inherent properties of the proteins, but possibly by other unknown factors.
期刊介绍:
Molecular Brain is an open access, peer-reviewed journal that considers manuscripts on all aspects of studies on the nervous system at the molecular, cellular, and systems level providing a forum for scientists to communicate their findings.
Molecular brain research is a rapidly expanding research field in which integrative approaches at the genetic, molecular, cellular and synaptic levels yield key information about the physiological and pathological brain. These studies involve the use of a wide range of modern techniques in molecular biology, genomics, proteomics, imaging and electrophysiology.