{"title":"用于癌症治疗的肿瘤定位抗体-细胞因子融合剂","authors":"Eleonora Prodi, Dario Neri, Roberto De Luca","doi":"10.2147/OTT.S480787","DOIUrl":null,"url":null,"abstract":"<p><p>Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.</p>","PeriodicalId":19534,"journal":{"name":"OncoTargets and therapy","volume":"17 ","pages":"697-715"},"PeriodicalIF":2.7000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368152/pdf/","citationCount":"0","resultStr":"{\"title\":\"Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy.\",\"authors\":\"Eleonora Prodi, Dario Neri, Roberto De Luca\",\"doi\":\"10.2147/OTT.S480787\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.</p>\",\"PeriodicalId\":19534,\"journal\":{\"name\":\"OncoTargets and therapy\",\"volume\":\"17 \",\"pages\":\"697-715\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368152/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"OncoTargets and therapy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2147/OTT.S480787\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"OncoTargets and therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2147/OTT.S480787","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Tumor-Homing Antibody-Cytokine Fusions for Cancer Therapy.
Recombinant cytokine products have emerged as a promising avenue in cancer therapy due to their capacity to modulate and enhance the immune response against tumors. However, their clinical application is significantly hindered by systemic toxicities already at low doses, thus preventing escalation to therapeutically active regimens. One promising approach to overcoming these limitations is using antibody-cytokine fusion proteins (also called immunocytokines). These biopharmaceuticals leverage the targeting specificity of antibodies to deliver cytokines directly to the tumor microenvironment, thereby reducing systemic exposure and enhancing the therapeutic index. This review comprehensively examines the development and potential of antibody-cytokine fusion proteins in cancer therapy. It explores the molecular characteristics that influence the performance of these fusion proteins, and it highlights key findings from preclinical and clinical studies, illustrating the potential of immunocytokines to improve treatment outcomes in cancer patients. Recent advancements in the field, such as novel engineering strategies and combination strategies to enhance the efficacy and safety of immunocytokines, are also discussed. These innovations offer new opportunities to optimize this class of biotherapeutics, making them a more viable and effective option for cancer treatment. As the field continues to evolve, understanding the critical factors that influence the performance of immunocytokines will be essential for successfully translating these therapies into clinical practice.
期刊介绍:
OncoTargets and Therapy is an international, peer-reviewed journal focusing on molecular aspects of cancer research, that is, the molecular diagnosis of and targeted molecular or precision therapy for all types of cancer.
The journal is characterized by the rapid reporting of high-quality original research, basic science, reviews and evaluations, expert opinion and commentary that shed novel insight on a cancer or cancer subtype.
Specific topics covered by the journal include:
-Novel therapeutic targets and innovative agents
-Novel therapeutic regimens for improved benefit and/or decreased side effects
-Early stage clinical trials
Further considerations when submitting to OncoTargets and Therapy:
-Studies containing in vivo animal model data will be considered favorably.
-Tissue microarray analyses will not be considered except in cases where they are supported by comprehensive biological studies involving multiple cell lines.
-Biomarker association studies will be considered only when validated by comprehensive in vitro data and analysis of human tissue samples.
-Studies utilizing publicly available data (e.g. GWAS/TCGA/GEO etc.) should add to the body of knowledge about a specific disease or relevant phenotype and must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Bioinformatics studies must be validated using the authors’ own data through replication in an independent sample set and functional follow-up.
-Single nucleotide polymorphism (SNP) studies will not be considered.