{"title":"在连续流反应器中生产木质素喷气燃料的同时解聚和加氢脱氧工艺","authors":"","doi":"10.1016/j.fuproc.2024.108129","DOIUrl":null,"url":null,"abstract":"<div><p>Economical production of lignin-based jet fuel (LJF) can improve the sustainability of sustainable aviation fuels (SAFs) as well as can reduce the overall greenhouse gas emissions. However, the challenge lies in converting technical lignin polymer from biorefinery directly to jet fuel in a continuous operation. In this work, we demonstrate a simultaneous depolymerization and hydrodeoxygenation (SDHDO) process to produce lignin-based jet fuel from the alkali corn stover lignin (ACSL) using engineered Ru-HY-60-MI catalyst in a continuous flow reactor, for the first time. The maximum carbon yield of LJF of 17.9 wt% was obtained, and it comprised of 60.2 wt% monocycloalkanes, and 21.6 wt% polycycloalkanes. Catalyst characterization of Ru-HY-60-MI suggested there was no significant change in HY zeolite structure and its crystallinity after catalyst engineering. Catalyst characterizations performed post the SDHDO experiments indicate presence of carbon and K content in the catalyst. K content presence in the spent catalyst was due to K<sup>+</sup> ion was exchanged between lignin solution and HY-60 while carbon presence validated the SDHDO chemistry on the catalyst surface. Tier α fuel property testing indicates that LJF production using SDHDO chemistry can produce SAF with high compatibility, good sealing properties, low emissions, and high energy density for aircraft.</p></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378382024000997/pdfft?md5=71effa12b8694059dffbf5723e7b3e5b&pid=1-s2.0-S0378382024000997-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A simultaneous depolymerization and hydrodeoxygenation process to produce lignin-based jet fuel in continuous flow reactor\",\"authors\":\"\",\"doi\":\"10.1016/j.fuproc.2024.108129\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Economical production of lignin-based jet fuel (LJF) can improve the sustainability of sustainable aviation fuels (SAFs) as well as can reduce the overall greenhouse gas emissions. However, the challenge lies in converting technical lignin polymer from biorefinery directly to jet fuel in a continuous operation. In this work, we demonstrate a simultaneous depolymerization and hydrodeoxygenation (SDHDO) process to produce lignin-based jet fuel from the alkali corn stover lignin (ACSL) using engineered Ru-HY-60-MI catalyst in a continuous flow reactor, for the first time. The maximum carbon yield of LJF of 17.9 wt% was obtained, and it comprised of 60.2 wt% monocycloalkanes, and 21.6 wt% polycycloalkanes. Catalyst characterization of Ru-HY-60-MI suggested there was no significant change in HY zeolite structure and its crystallinity after catalyst engineering. Catalyst characterizations performed post the SDHDO experiments indicate presence of carbon and K content in the catalyst. K content presence in the spent catalyst was due to K<sup>+</sup> ion was exchanged between lignin solution and HY-60 while carbon presence validated the SDHDO chemistry on the catalyst surface. Tier α fuel property testing indicates that LJF production using SDHDO chemistry can produce SAF with high compatibility, good sealing properties, low emissions, and high energy density for aircraft.</p></div>\",\"PeriodicalId\":326,\"journal\":{\"name\":\"Fuel Processing Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000997/pdfft?md5=71effa12b8694059dffbf5723e7b3e5b&pid=1-s2.0-S0378382024000997-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel Processing Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378382024000997\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382024000997","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
A simultaneous depolymerization and hydrodeoxygenation process to produce lignin-based jet fuel in continuous flow reactor
Economical production of lignin-based jet fuel (LJF) can improve the sustainability of sustainable aviation fuels (SAFs) as well as can reduce the overall greenhouse gas emissions. However, the challenge lies in converting technical lignin polymer from biorefinery directly to jet fuel in a continuous operation. In this work, we demonstrate a simultaneous depolymerization and hydrodeoxygenation (SDHDO) process to produce lignin-based jet fuel from the alkali corn stover lignin (ACSL) using engineered Ru-HY-60-MI catalyst in a continuous flow reactor, for the first time. The maximum carbon yield of LJF of 17.9 wt% was obtained, and it comprised of 60.2 wt% monocycloalkanes, and 21.6 wt% polycycloalkanes. Catalyst characterization of Ru-HY-60-MI suggested there was no significant change in HY zeolite structure and its crystallinity after catalyst engineering. Catalyst characterizations performed post the SDHDO experiments indicate presence of carbon and K content in the catalyst. K content presence in the spent catalyst was due to K+ ion was exchanged between lignin solution and HY-60 while carbon presence validated the SDHDO chemistry on the catalyst surface. Tier α fuel property testing indicates that LJF production using SDHDO chemistry can produce SAF with high compatibility, good sealing properties, low emissions, and high energy density for aircraft.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.