基于模型的可行主成分分析:秩和误差协方差矩阵的联合估计

IF 1.5 3区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computational Statistics & Data Analysis Pub Date : 2024-08-22 DOI:10.1016/j.csda.2024.108042
Tak-Shing T. Chan, Alex Gibberd
{"title":"基于模型的可行主成分分析:秩和误差协方差矩阵的联合估计","authors":"Tak-Shing T. Chan,&nbsp;Alex Gibberd","doi":"10.1016/j.csda.2024.108042","DOIUrl":null,"url":null,"abstract":"<div><p>Real-world inputs to principal component analysis are often corrupted by temporally or spatially correlated errors. There are several methods to mitigate this, e.g., generalized least-square matrix decomposition and maximum likelihood approaches; however, they all require that the number of components or the error covariances to be known in advance, rendering the methods infeasible. To address this issue, a novel method is developed which estimates the number of components and the error covariances at the same time. The method is based on working covariance models, an idea adapted from generalized estimating equations, where the user only specifies the structural form of the error covariances. If the structural form is also unknown, working covariance selection can be used to search for the best structure from a user-defined library. Experiments on synthetic and real data confirm the efficacy of the proposed approach.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"201 ","pages":"Article 108042"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001269/pdfft?md5=ac444320856de4406b797dc038c23d54&pid=1-s2.0-S0167947324001269-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Feasible model-based principal component analysis: Joint estimation of rank and error covariance matrix\",\"authors\":\"Tak-Shing T. Chan,&nbsp;Alex Gibberd\",\"doi\":\"10.1016/j.csda.2024.108042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Real-world inputs to principal component analysis are often corrupted by temporally or spatially correlated errors. There are several methods to mitigate this, e.g., generalized least-square matrix decomposition and maximum likelihood approaches; however, they all require that the number of components or the error covariances to be known in advance, rendering the methods infeasible. To address this issue, a novel method is developed which estimates the number of components and the error covariances at the same time. The method is based on working covariance models, an idea adapted from generalized estimating equations, where the user only specifies the structural form of the error covariances. If the structural form is also unknown, working covariance selection can be used to search for the best structure from a user-defined library. Experiments on synthetic and real data confirm the efficacy of the proposed approach.</p></div>\",\"PeriodicalId\":55225,\"journal\":{\"name\":\"Computational Statistics & Data Analysis\",\"volume\":\"201 \",\"pages\":\"Article 108042\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001269/pdfft?md5=ac444320856de4406b797dc038c23d54&pid=1-s2.0-S0167947324001269-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics & Data Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167947324001269\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001269","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

现实世界中的主成分分析输入往往会受到时间或空间相关误差的干扰。有几种方法可以缓解这种情况,例如广义最小二乘法矩阵分解法和最大似然法;但是,这些方法都要求事先知道成分数或误差协方差,因此不可行。为了解决这个问题,我们开发了一种新方法,可以同时估算成分数量和误差协方差。该方法以工作协方差模型为基础,这一思想源自广义估计方程,用户只需指定误差协方差的结构形式。如果结构形式也是未知的,则可以使用工作协方差选择从用户定义的库中搜索最佳结构。对合成数据和真实数据的实验证实了所建议方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feasible model-based principal component analysis: Joint estimation of rank and error covariance matrix

Real-world inputs to principal component analysis are often corrupted by temporally or spatially correlated errors. There are several methods to mitigate this, e.g., generalized least-square matrix decomposition and maximum likelihood approaches; however, they all require that the number of components or the error covariances to be known in advance, rendering the methods infeasible. To address this issue, a novel method is developed which estimates the number of components and the error covariances at the same time. The method is based on working covariance models, an idea adapted from generalized estimating equations, where the user only specifies the structural form of the error covariances. If the structural form is also unknown, working covariance selection can be used to search for the best structure from a user-defined library. Experiments on synthetic and real data confirm the efficacy of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational Statistics & Data Analysis
Computational Statistics & Data Analysis 数学-计算机:跨学科应用
CiteScore
3.70
自引率
5.60%
发文量
167
审稿时长
60 days
期刊介绍: Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas: I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article. II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures. [...] III) Special Applications - [...] IV) Annals of Statistical Data Science [...]
期刊最新文献
Editorial Board Stratified distance space improves the efficiency of sequential samplers for approximate Bayesian computation Confidence intervals for tree-structured varying coefficients Efficient computation of sparse and robust maximum association estimators Functional time transformation model with applications to digital health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1