{"title":"D 波段中心理论为何存在异常现象?表面催化和化学的新 BASED 理论","authors":"","doi":"10.1016/S1872-2067(24)60100-2","DOIUrl":null,"url":null,"abstract":"<div><p>Since the D-band center theory was proposed, it has been widely used in the fields of surface chemistry by almost all researchers, due to its easy understanding, convenient operation and relative accuracy. However, with the continuous development of material systems and modification strategies, researchers have gradually found that D-band center theory is usually effective for large metal particle systems, but for small metal particle systems or semiconductors, such as single atom systems, the opposite conclusion to the D-band center theory is often obtained. To solve the issue above, here we propose a bonding and anti-bonding orbitals stable electron intensity difference (BASED) theory for surface chemistry. The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory, but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites. Importantly, a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory, where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5 Å. In short, the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":null,"pages":null},"PeriodicalIF":15.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Why the abnormal phenomena of D-band center theory exist? A new BASED theory for surface catalysis and chemistry\",\"authors\":\"\",\"doi\":\"10.1016/S1872-2067(24)60100-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Since the D-band center theory was proposed, it has been widely used in the fields of surface chemistry by almost all researchers, due to its easy understanding, convenient operation and relative accuracy. However, with the continuous development of material systems and modification strategies, researchers have gradually found that D-band center theory is usually effective for large metal particle systems, but for small metal particle systems or semiconductors, such as single atom systems, the opposite conclusion to the D-band center theory is often obtained. To solve the issue above, here we propose a bonding and anti-bonding orbitals stable electron intensity difference (BASED) theory for surface chemistry. The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory, but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites. Importantly, a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory, where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5 Å. In short, the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.</p></div>\",\"PeriodicalId\":9832,\"journal\":{\"name\":\"Chinese Journal of Catalysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Journal of Catalysis\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1872206724601002\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724601002","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
自 D-带中心理论提出以来,由于其简单易懂、操作方便、相对准确等特点,几乎被所有研究人员广泛应用于表面化学领域。然而,随着材料体系和改性策略的不断发展,研究人员逐渐发现,D-带中心理论通常对大金属颗粒体系有效,但对于小金属颗粒体系或半导体,如单原子体系,往往会得到与 D-带中心理论相反的结论。为了解决上述问题,我们在此提出了一种用于表面化学的成键和反键轨道稳定电子强度差(BASED)理论。新提出的 BASED 理论不仅能成功解释 D 带中心理论的异常现象,而且在预测活性位点上中间产物的吸附能和键长方面表现出更高的精度。重要的是,基于 BASED 理论观察到了吸附过程中的自旋转变态新现象,即在中间产物的吸附过程中,当它们的距离为 2.5 Å 左右时,活性中心原子通常会产生不稳定的高自旋转变态以增强其吸附能力。
Why the abnormal phenomena of D-band center theory exist? A new BASED theory for surface catalysis and chemistry
Since the D-band center theory was proposed, it has been widely used in the fields of surface chemistry by almost all researchers, due to its easy understanding, convenient operation and relative accuracy. However, with the continuous development of material systems and modification strategies, researchers have gradually found that D-band center theory is usually effective for large metal particle systems, but for small metal particle systems or semiconductors, such as single atom systems, the opposite conclusion to the D-band center theory is often obtained. To solve the issue above, here we propose a bonding and anti-bonding orbitals stable electron intensity difference (BASED) theory for surface chemistry. The newly-proposed BASED theory can not only successfully explain the abnormal phenomena of D-band center theory, but also exhibits a higher accuracy for prediction of adsorption energy and bond length of intermediates on active sites. Importantly, a new phenomenon of the spin transition state in the adsorption process is observed based on the BASED theory, where the active center atom usually yields an unstable high spin transition state to enhance its adsorption capability in the adsorption process of intermediates when their distance is about 2.5 Å. In short, the BASED theory can be considered as a general principle to understand catalytic mechanism of intermediates on surfaces.
期刊介绍:
The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.