接近全密度的添加剂制造的 316L 不锈钢具有出色的动态机械性能

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-09-01 DOI:10.1016/j.matdes.2024.113276
{"title":"接近全密度的添加剂制造的 316L 不锈钢具有出色的动态机械性能","authors":"","doi":"10.1016/j.matdes.2024.113276","DOIUrl":null,"url":null,"abstract":"<div><p>Mechanical properties of additively manufactured alloys are momentously affected by the fabrication defects, thus limiting their applications in extreme conditions. Here we report on a near fully dense 316L stainless steel via optimized laser processing parameters. The results reveal that the dynamic mechanical response exhibits much greater sensitivity to defects than the quasi-static one. The densest specimen (porosity &lt; 0.01 %, 260W-316L) exhibits superior spall strength of 3.87 GPa and negligible damage fraction of 0.03 % at peak stress of 4.8 GPa, which are 12 % higher and 92 % smaller than those of 0.18 % porosity specimen (300W-316L). For both horizontal and vertical impacts, hardly any anisotropy of spall strength is observed in 260W-316L, demonstrating the crucial role of the pore defects on the dynamical behavior. Moreover, dislocation slip dominated spallation mechanisms have been observed in the additively manufactured 316L specimens, accompanied by a small amount of deformation twinning and martensitic transitions. This comprehensive understanding of the defect-dependent spallation behavior and deformation mechanisms provides valuable insights for optimizing the dynamic mechanical properties of additively manufactured metals and alloys.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524006518/pdfft?md5=17b20210215d50460fc59e0022272587&pid=1-s2.0-S0264127524006518-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Near-full density enabled excellent dynamic mechanical behavior in additively manufactured 316L stainless steels\",\"authors\":\"\",\"doi\":\"10.1016/j.matdes.2024.113276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mechanical properties of additively manufactured alloys are momentously affected by the fabrication defects, thus limiting their applications in extreme conditions. Here we report on a near fully dense 316L stainless steel via optimized laser processing parameters. The results reveal that the dynamic mechanical response exhibits much greater sensitivity to defects than the quasi-static one. The densest specimen (porosity &lt; 0.01 %, 260W-316L) exhibits superior spall strength of 3.87 GPa and negligible damage fraction of 0.03 % at peak stress of 4.8 GPa, which are 12 % higher and 92 % smaller than those of 0.18 % porosity specimen (300W-316L). For both horizontal and vertical impacts, hardly any anisotropy of spall strength is observed in 260W-316L, demonstrating the crucial role of the pore defects on the dynamical behavior. Moreover, dislocation slip dominated spallation mechanisms have been observed in the additively manufactured 316L specimens, accompanied by a small amount of deformation twinning and martensitic transitions. This comprehensive understanding of the defect-dependent spallation behavior and deformation mechanisms provides valuable insights for optimizing the dynamic mechanical properties of additively manufactured metals and alloys.</p></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0264127524006518/pdfft?md5=17b20210215d50460fc59e0022272587&pid=1-s2.0-S0264127524006518-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524006518\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524006518","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

快速成型合金的机械性能会瞬间受到制造缺陷的影响,从而限制了其在极端条件下的应用。在此,我们报告了通过优化激光加工参数获得的接近全致密的 316L 不锈钢。结果表明,动态机械响应对缺陷的敏感性远高于准静态响应。最致密的试样(孔隙率为 0.01%,260W-316L)在峰值应力为 4.8 GPa 时表现出 3.87 GPa 的超强剥落强度和 0.03 % 的可忽略损伤率,分别比孔隙率为 0.18 % 的试样(300W-316L)高 12 % 和小 92 %。对于水平和垂直冲击,在 260W-316L 中几乎观察不到任何剥落强度的各向异性,这表明孔隙缺陷对动力学行为起着至关重要的作用。此外,在加成制造的 316L 试样中还观察到以位错滑移为主的剥落机制,并伴有少量的变形孪晶和马氏体转变。对依赖于缺陷的剥落行为和变形机制的全面了解为优化快速成型金属和合金的动态机械性能提供了宝贵的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Near-full density enabled excellent dynamic mechanical behavior in additively manufactured 316L stainless steels

Mechanical properties of additively manufactured alloys are momentously affected by the fabrication defects, thus limiting their applications in extreme conditions. Here we report on a near fully dense 316L stainless steel via optimized laser processing parameters. The results reveal that the dynamic mechanical response exhibits much greater sensitivity to defects than the quasi-static one. The densest specimen (porosity < 0.01 %, 260W-316L) exhibits superior spall strength of 3.87 GPa and negligible damage fraction of 0.03 % at peak stress of 4.8 GPa, which are 12 % higher and 92 % smaller than those of 0.18 % porosity specimen (300W-316L). For both horizontal and vertical impacts, hardly any anisotropy of spall strength is observed in 260W-316L, demonstrating the crucial role of the pore defects on the dynamical behavior. Moreover, dislocation slip dominated spallation mechanisms have been observed in the additively manufactured 316L specimens, accompanied by a small amount of deformation twinning and martensitic transitions. This comprehensive understanding of the defect-dependent spallation behavior and deformation mechanisms provides valuable insights for optimizing the dynamic mechanical properties of additively manufactured metals and alloys.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Investigation of printing turn angle effects on structural deformation and stress in selective laser melting Inverse-designed 3D sequential metamaterials achieving extreme stiffness Multi-scale ceramic TiC solves the strength-plasticity equilibrium problem of high entropy alloy Comment on Hajra et al.: “High-temperature phase stability and phase transformations of Niobium-Chromium Laves phase: Experimental and first-principles calculation” Microneedles integrated with crystallinity control for poorly water-soluble drugs: Enhanced bioavailability and innovative controlled release system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1