利用定向能沉积技术制造的因瓦 36/MnCu 功能分级材料中缺陷的形成机制

IF 11.2 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Science & Technology Pub Date : 2024-09-03 DOI:10.1016/j.jmst.2024.08.006
Yijie Peng, Wei Fan, Dapeng Hao, Zhe Feng, Mingji Dang, Zhiwei Hao, Hua Tan, Fengying Zhang, Xin Lin
{"title":"利用定向能沉积技术制造的因瓦 36/MnCu 功能分级材料中缺陷的形成机制","authors":"Yijie Peng, Wei Fan, Dapeng Hao, Zhe Feng, Mingji Dang, Zhiwei Hao, Hua Tan, Fengying Zhang, Xin Lin","doi":"10.1016/j.jmst.2024.08.006","DOIUrl":null,"url":null,"abstract":"<p>The fabrication of Invar/MnCu functionally graded material (FGM) through directed energy deposition (DED) can satisfy the demands for precision devices in aerospace, providing lightweight properties and integrating thermal stability and vibration damping capabilities. However, basic research on Invar/MnCu FGM is still lacking, hindering its potential applications. To address this gap, this study was conducted using mixed powders and consistent process parameters to print experiments for Invar/MnCu FGM and homogeneous samples. Phases, microstructures, compositions, and thermal expansion properties were thoroughly examined. Three types of defects were detected in the Invar/MnCu FGM sample: unmelted Invar 36 powders, cracks, and pores. The mechanism of unmelted powders was deeply discussed, attributing it to material properties influencing laser absorptivity, the required time for melting powder, and effects on solidus temperature. The mechanism of cracks was also discussed, attributing it to the γ-Fe dendritic structure causing low melting point metal to form an intergranular liquid film, harmful secondary phases mismatched with the terminal alloy, and obvious tensile stresses during the DED process. Additionally, an effective strategy was proposed to reduce defects in Invar/MnCu FGM. After optimization, the specimens exhibited excellent tensile properties, with a yield strength of 262 ± 5 MPa, an ultimate tensile strength of 316 ± 7 MPa, and an elongation of 3% ± 1%. This research provides valuable references and insights for subsequent work, offering robust support for better understanding and designing other FGM.</p>","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":null,"pages":null},"PeriodicalIF":11.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Formation mechanism of defects in Invar 36/MnCu functionally graded material fabricated by directed energy deposition\",\"authors\":\"Yijie Peng, Wei Fan, Dapeng Hao, Zhe Feng, Mingji Dang, Zhiwei Hao, Hua Tan, Fengying Zhang, Xin Lin\",\"doi\":\"10.1016/j.jmst.2024.08.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The fabrication of Invar/MnCu functionally graded material (FGM) through directed energy deposition (DED) can satisfy the demands for precision devices in aerospace, providing lightweight properties and integrating thermal stability and vibration damping capabilities. However, basic research on Invar/MnCu FGM is still lacking, hindering its potential applications. To address this gap, this study was conducted using mixed powders and consistent process parameters to print experiments for Invar/MnCu FGM and homogeneous samples. Phases, microstructures, compositions, and thermal expansion properties were thoroughly examined. Three types of defects were detected in the Invar/MnCu FGM sample: unmelted Invar 36 powders, cracks, and pores. The mechanism of unmelted powders was deeply discussed, attributing it to material properties influencing laser absorptivity, the required time for melting powder, and effects on solidus temperature. The mechanism of cracks was also discussed, attributing it to the γ-Fe dendritic structure causing low melting point metal to form an intergranular liquid film, harmful secondary phases mismatched with the terminal alloy, and obvious tensile stresses during the DED process. Additionally, an effective strategy was proposed to reduce defects in Invar/MnCu FGM. After optimization, the specimens exhibited excellent tensile properties, with a yield strength of 262 ± 5 MPa, an ultimate tensile strength of 316 ± 7 MPa, and an elongation of 3% ± 1%. This research provides valuable references and insights for subsequent work, offering robust support for better understanding and designing other FGM.</p>\",\"PeriodicalId\":16154,\"journal\":{\"name\":\"Journal of Materials Science & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science & Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jmst.2024.08.006\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2024.08.006","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过定向能沉积(DED)技术制造因瓦/锰铜功能分级材料(FGM),可满足航空航天领域对精密设备的要求,不仅具有轻质特性,还集成了热稳定性和减振功能。然而,有关英华/锰铜 FGM 的基础研究仍然缺乏,阻碍了其潜在应用。为了填补这一空白,本研究采用混合粉末和一致的工艺参数,对因钢锰铜 FGM 和均质样品进行了打印实验。对相位、微观结构、成分和热膨胀特性进行了全面检查。在因瓦/锰铜 FGM 样品中检测到三种类型的缺陷:未熔化的因瓦 36 粉末、裂纹和气孔。对未熔化粉末的机理进行了深入探讨,将其归因于影响激光吸收率的材料特性、熔化粉末所需的时间以及对凝固温度的影响。还讨论了裂纹的产生机制,认为这是由于γ-Fe树枝状结构导致低熔点金属形成晶间液膜、有害的次生相与终端合金不匹配以及 DED 过程中明显的拉应力造成的。此外,还提出了减少因瓦/锰铜 FGM 缺陷的有效策略。经过优化后,试样表现出优异的拉伸性能,屈服强度为 262 ± 5 兆帕,极限拉伸强度为 316 ± 7 兆帕,伸长率为 3% ± 1%。这项研究为后续工作提供了宝贵的参考和见解,为更好地理解和设计其他 FGM 提供了有力的支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Formation mechanism of defects in Invar 36/MnCu functionally graded material fabricated by directed energy deposition

The fabrication of Invar/MnCu functionally graded material (FGM) through directed energy deposition (DED) can satisfy the demands for precision devices in aerospace, providing lightweight properties and integrating thermal stability and vibration damping capabilities. However, basic research on Invar/MnCu FGM is still lacking, hindering its potential applications. To address this gap, this study was conducted using mixed powders and consistent process parameters to print experiments for Invar/MnCu FGM and homogeneous samples. Phases, microstructures, compositions, and thermal expansion properties were thoroughly examined. Three types of defects were detected in the Invar/MnCu FGM sample: unmelted Invar 36 powders, cracks, and pores. The mechanism of unmelted powders was deeply discussed, attributing it to material properties influencing laser absorptivity, the required time for melting powder, and effects on solidus temperature. The mechanism of cracks was also discussed, attributing it to the γ-Fe dendritic structure causing low melting point metal to form an intergranular liquid film, harmful secondary phases mismatched with the terminal alloy, and obvious tensile stresses during the DED process. Additionally, an effective strategy was proposed to reduce defects in Invar/MnCu FGM. After optimization, the specimens exhibited excellent tensile properties, with a yield strength of 262 ± 5 MPa, an ultimate tensile strength of 316 ± 7 MPa, and an elongation of 3% ± 1%. This research provides valuable references and insights for subsequent work, offering robust support for better understanding and designing other FGM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Science & Technology
Journal of Materials Science & Technology 工程技术-材料科学:综合
CiteScore
20.00
自引率
11.00%
发文量
995
审稿时长
13 days
期刊介绍: Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.
期刊最新文献
Dispersion, solid solution, and covalent bond coupled to strengthen K4169/TiAl composite brazed joints: first-principles and experimental perspective Elucidating the effect of cyclic plasticity on strengthening mechanisms and fatigue property of 5xxx Al alloys Ti3C2Tx MXene enhanced PEO/SN-based solid electrolyte for high-performance Li metal battery Electron structure customization of molybdenum phosphide via lanthanum doping toward highly efficient overall water splitting Self-regulating heating and self-powered flexible fiber fabrics at low temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1