通过 LC-QTOF-MS 鉴别以前未知化合物的分步程序,以使用甲喹酮类似物 SL-164 的中毒事件为例。

IF 2.6 3区 医学 Q2 BIOCHEMICAL RESEARCH METHODS Drug Testing and Analysis Pub Date : 2024-09-04 DOI:10.1002/dta.3792
Helena Fels, Simon Franz, Torsten Dame, Gisela Skopp, Frank Musshoff
{"title":"通过 LC-QTOF-MS 鉴别以前未知化合物的分步程序,以使用甲喹酮类似物 SL-164 的中毒事件为例。","authors":"Helena Fels, Simon Franz, Torsten Dame, Gisela Skopp, Frank Musshoff","doi":"10.1002/dta.3792","DOIUrl":null,"url":null,"abstract":"<p><p>In September 2019, a 22-year-old man with a history of drug abuse presented to the hospital with altered mental status. Due to a suspected drug overdose, a blood sample taken on admission and a urine sample collected 30 h thereafter were submitted to our laboratory to test for illegal drugs, pharmaceutical substances, and designer drugs. During the routine toxicological analysis of the serum sample, morphine and phenobarbital were identified by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS). Additionally, two compounds showing identical accurate masses and isotope ratios as the designer benzodiazepine diclazepam and the benzodiazepine lormetazepam were found. However, retention times differed significantly from the expected values, and the acquired MS/MS spectra did not match the library entries of the two compounds, indicating the presence of two previously unknown substances. After further investigation, SL-164 (5-chloro-3-(4-chloro-2-methylphenyl)-2-methyl-4(3H)-quinazolinone), a methaqualone analog, which has recently emerged on the research chemical market, and its hydroxy metabolite were tentatively identified by accurate mass, isotope matching, and plausible fragmentation. However, for unequivocal confirmation and quantification, a reference standard is required. As no reference material was available by the end of 2019, SL-164 was obtained from an online shop, and its identity and purity (97.8%) were confirmed by nuclear magnetic resonance spectroscopy. The subsequent quantitative analysis revealed a concentration of 390 ng/mL SL-164 in serum. In the urine sample, the parent compound was not detected, but three suspected monohydroxylated metabolites were found. This example shows that LC-QTOF-MS is a powerful approach for the (tentative) identification of unknown compounds in biological matrices.</p>","PeriodicalId":160,"journal":{"name":"Drug Testing and Analysis","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Step-By-Step Procedure to Identify Previously Unknown Compounds by LC-QTOF-MS Exemplified by an Intoxication With the Methaqualone Analog SL-164.\",\"authors\":\"Helena Fels, Simon Franz, Torsten Dame, Gisela Skopp, Frank Musshoff\",\"doi\":\"10.1002/dta.3792\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In September 2019, a 22-year-old man with a history of drug abuse presented to the hospital with altered mental status. Due to a suspected drug overdose, a blood sample taken on admission and a urine sample collected 30 h thereafter were submitted to our laboratory to test for illegal drugs, pharmaceutical substances, and designer drugs. During the routine toxicological analysis of the serum sample, morphine and phenobarbital were identified by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS). Additionally, two compounds showing identical accurate masses and isotope ratios as the designer benzodiazepine diclazepam and the benzodiazepine lormetazepam were found. However, retention times differed significantly from the expected values, and the acquired MS/MS spectra did not match the library entries of the two compounds, indicating the presence of two previously unknown substances. After further investigation, SL-164 (5-chloro-3-(4-chloro-2-methylphenyl)-2-methyl-4(3H)-quinazolinone), a methaqualone analog, which has recently emerged on the research chemical market, and its hydroxy metabolite were tentatively identified by accurate mass, isotope matching, and plausible fragmentation. However, for unequivocal confirmation and quantification, a reference standard is required. As no reference material was available by the end of 2019, SL-164 was obtained from an online shop, and its identity and purity (97.8%) were confirmed by nuclear magnetic resonance spectroscopy. The subsequent quantitative analysis revealed a concentration of 390 ng/mL SL-164 in serum. In the urine sample, the parent compound was not detected, but three suspected monohydroxylated metabolites were found. This example shows that LC-QTOF-MS is a powerful approach for the (tentative) identification of unknown compounds in biological matrices.</p>\",\"PeriodicalId\":160,\"journal\":{\"name\":\"Drug Testing and Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Testing and Analysis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/dta.3792\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Testing and Analysis","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/dta.3792","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

2019年9月,一名有吸毒史的22岁男子因精神状态改变入院。由于怀疑吸毒过量,入院时采集的血样和入院 30 小时后采集的尿样被提交至本实验室,以检测是否含有违禁药物、药物物质和特制毒品。在对血清样本进行常规毒理学分析时,通过液相色谱-四极杆-飞行时间质谱法(LC-QTOF-MS)鉴定出了吗啡和苯巴比妥。此外,还发现了两种化合物,其精确质量和同位素比值与设计苯二氮杂卓的地氯西泮和苯二氮杂卓的洛美西泮完全相同。然而,保留时间与预期值相差很大,获得的 MS/MS 图谱与这两种化合物的文库条目不符,表明存在两种以前未知的物质。经过进一步调查,通过精确的质量、同位素匹配和可信的碎片,初步确定了 SL-164(5-氯-3-(4-氯-2-甲基苯基)-2-甲基-4(3H)-喹唑啉酮)及其羟基代谢物,SL-164 是最近在研究化学品市场上出现的一种甲喹酮类似物。不过,要进行明确的确认和定量,还需要参考标准。由于到 2019 年底还没有参考材料,因此从网上商店购买了 SL-164,并通过核磁共振光谱确认了其身份和纯度(97.8%)。随后的定量分析显示,血清中 SL-164 的浓度为 390 纳克/毫升。尿样中未检测到母体化合物,但发现了三种疑似单羟基代谢物。这个例子表明,LC-QTOF-MS 是(初步)鉴定生物基质中未知化合物的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Step-By-Step Procedure to Identify Previously Unknown Compounds by LC-QTOF-MS Exemplified by an Intoxication With the Methaqualone Analog SL-164.

In September 2019, a 22-year-old man with a history of drug abuse presented to the hospital with altered mental status. Due to a suspected drug overdose, a blood sample taken on admission and a urine sample collected 30 h thereafter were submitted to our laboratory to test for illegal drugs, pharmaceutical substances, and designer drugs. During the routine toxicological analysis of the serum sample, morphine and phenobarbital were identified by liquid chromatography-quadrupole-time-of-flight mass spectrometry (LC-QTOF-MS). Additionally, two compounds showing identical accurate masses and isotope ratios as the designer benzodiazepine diclazepam and the benzodiazepine lormetazepam were found. However, retention times differed significantly from the expected values, and the acquired MS/MS spectra did not match the library entries of the two compounds, indicating the presence of two previously unknown substances. After further investigation, SL-164 (5-chloro-3-(4-chloro-2-methylphenyl)-2-methyl-4(3H)-quinazolinone), a methaqualone analog, which has recently emerged on the research chemical market, and its hydroxy metabolite were tentatively identified by accurate mass, isotope matching, and plausible fragmentation. However, for unequivocal confirmation and quantification, a reference standard is required. As no reference material was available by the end of 2019, SL-164 was obtained from an online shop, and its identity and purity (97.8%) were confirmed by nuclear magnetic resonance spectroscopy. The subsequent quantitative analysis revealed a concentration of 390 ng/mL SL-164 in serum. In the urine sample, the parent compound was not detected, but three suspected monohydroxylated metabolites were found. This example shows that LC-QTOF-MS is a powerful approach for the (tentative) identification of unknown compounds in biological matrices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Testing and Analysis
Drug Testing and Analysis BIOCHEMICAL RESEARCH METHODS-CHEMISTRY, ANALYTICAL
CiteScore
5.90
自引率
24.10%
发文量
191
审稿时长
2.3 months
期刊介绍: As the incidence of drugs escalates in 21st century living, their detection and analysis have become increasingly important. Sport, the workplace, crime investigation, homeland security, the pharmaceutical industry and the environment are just some of the high profile arenas in which analytical testing has provided an important investigative tool for uncovering the presence of extraneous substances. In addition to the usual publishing fare of primary research articles, case reports and letters, Drug Testing and Analysis offers a unique combination of; ‘How to’ material such as ‘Tutorials’ and ‘Reviews’, Speculative pieces (‘Commentaries’ and ‘Perspectives'', providing a broader scientific and social context to the aspects of analytical testing), ‘Annual banned substance reviews’ (delivering a critical evaluation of the methods used in the characterization of established and newly outlawed compounds). Rather than focus on the application of a single technique, Drug Testing and Analysis employs a unique multidisciplinary approach to the field of controversial compound determination. Papers discussing chromatography, mass spectrometry, immunological approaches, 1D/2D gel electrophoresis, to name just a few select methods, are welcomed where their application is related to any of the six key topics listed below.
期刊最新文献
Determination of Hormonal Growth Promotants in Beef Using Liquid Chromatography-Tandem Mass Spectrometry. Detecting EPO in Microvolumetric Capillary Serum Shipped at Ambient Temperature for Antidoping Testing. Investigation Into the Equine Metabolism of Phosphodiesterase-4 Inhibitor Roflumilast for Potential Doping Control. UHPLC-QTOFMS Urine Drug Screening With Dilute-and-Shoot Sample Preparation and Vacuum-Insulated Probe-Heated Electrospray Ionization. Cover Picture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1