Sara Mansoorshahi, Anji T Yetman, Malenka M Bissell, Yuli Y Kim, Hector I Michelena, Julie De Backer, Laura Muiño Mosquera, Dawn S Hui, Anthony Caffarelli, Maria G Andreassi, Ilenia Foffa, Dongchuan Guo, Rodolfo Citro, Margot De Marco, Justin T Tretter, Shaine A Morris, Simon C Body, Jessica X Chong, Michael J Bamshad, Dianna M Milewicz, Siddharth K Prakash
{"title":"全外显子组测序揭示了双尖瓣主动脉瓣在早发并发症家族中的遗传复杂性。","authors":"Sara Mansoorshahi, Anji T Yetman, Malenka M Bissell, Yuli Y Kim, Hector I Michelena, Julie De Backer, Laura Muiño Mosquera, Dawn S Hui, Anthony Caffarelli, Maria G Andreassi, Ilenia Foffa, Dongchuan Guo, Rodolfo Citro, Margot De Marco, Justin T Tretter, Shaine A Morris, Simon C Body, Jessica X Chong, Michael J Bamshad, Dianna M Milewicz, Siddharth K Prakash","doi":"10.1016/j.ajhg.2024.08.001","DOIUrl":null,"url":null,"abstract":"<p><p>Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.</p>","PeriodicalId":7659,"journal":{"name":"American journal of human genetics","volume":" ","pages":"2219-2231"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480851/pdf/","citationCount":"0","resultStr":"{\"title\":\"Whole-exome sequencing uncovers the genetic complexity of bicuspid aortic valve in families with early-onset complications.\",\"authors\":\"Sara Mansoorshahi, Anji T Yetman, Malenka M Bissell, Yuli Y Kim, Hector I Michelena, Julie De Backer, Laura Muiño Mosquera, Dawn S Hui, Anthony Caffarelli, Maria G Andreassi, Ilenia Foffa, Dongchuan Guo, Rodolfo Citro, Margot De Marco, Justin T Tretter, Shaine A Morris, Simon C Body, Jessica X Chong, Michael J Bamshad, Dianna M Milewicz, Siddharth K Prakash\",\"doi\":\"10.1016/j.ajhg.2024.08.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.</p>\",\"PeriodicalId\":7659,\"journal\":{\"name\":\"American journal of human genetics\",\"volume\":\" \",\"pages\":\"2219-2231\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480851/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American journal of human genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ajhg.2024.08.001\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of human genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.ajhg.2024.08.001","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Whole-exome sequencing uncovers the genetic complexity of bicuspid aortic valve in families with early-onset complications.
Bicuspid aortic valve (BAV) is the most common congenital heart lesion with an estimated population prevalence of 1%. We hypothesize that specific gene variants predispose to early-onset complications of BAV (EBAV). We analyzed whole-exome sequences (WESs) to identify rare coding variants that contribute to BAV disease in 215 EBAV-affected families. Predicted damaging variants in candidate genes with moderate or strong supportive evidence to cause developmental cardiac phenotypes were present in 107 EBAV-affected families (50% of total), including genes that cause BAV (9%) or heritable thoracic aortic disease (HTAD, 19%). After appropriate filtration, we also identified 129 variants in 54 candidate genes that are associated with autosomal-dominant congenital heart phenotypes, including recurrent deleterious variation of FBN2, MYH6, channelopathy genes, and type 1 and 5 collagen genes. These findings confirm our hypothesis that unique rare genetic variants drive early-onset presentations of BAV disease.
期刊介绍:
The American Journal of Human Genetics (AJHG) is a monthly journal published by Cell Press, chosen by The American Society of Human Genetics (ASHG) as its premier publication starting from January 2008. AJHG represents Cell Press's first society-owned journal, and both ASHG and Cell Press anticipate significant synergies between AJHG content and that of other Cell Press titles.