{"title":"植物竞争线索激活拟南芥中的单线态氧信号通路","authors":"Nicole Berardi, Sasan Amirsadeghi, Clarence J Swanton","doi":"10.3389/fpls.2024.964476","DOIUrl":null,"url":null,"abstract":"<p><p>Oxidative stress responses of <i>Arabidopsis</i> to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (<sup>1</sup>O<sub>2</sub>). This <sup>1</sup>O<sub>2</sub> increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known <i>Arabidopsis</i> <sup>1</sup>O<sub>2</sub> generating systems that rapidly generate <sup>1</sup>O<sub>2</sub> following a dark to light transfer. The upregulation of only a few early <sup>1</sup>O<sub>2</sub> responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the <sup>1</sup>O<sub>2</sub> signaling. Moreover, increased expression of two enzyme genes, the <i>SULFOTRANSFERASE ST2A</i> (<i>ST2a</i>) and the early <sup>1</sup>O<sub>2</sub>-responsive <i>IAA-LEUCINE RESISTANCE (ILR)-LIKE6</i> (<i>ILL6</i>), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and <sup>1</sup>O<sub>2</sub> acclimation (versus cell death) responses to neighboring weeds.</p>","PeriodicalId":12632,"journal":{"name":"Frontiers in Plant Science","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368760/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plant competition cues activate a singlet oxygen signaling pathway in <i>Arabidopsis thaliana</i>.\",\"authors\":\"Nicole Berardi, Sasan Amirsadeghi, Clarence J Swanton\",\"doi\":\"10.3389/fpls.2024.964476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Oxidative stress responses of <i>Arabidopsis</i> to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (<sup>1</sup>O<sub>2</sub>). This <sup>1</sup>O<sub>2</sub> increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known <i>Arabidopsis</i> <sup>1</sup>O<sub>2</sub> generating systems that rapidly generate <sup>1</sup>O<sub>2</sub> following a dark to light transfer. The upregulation of only a few early <sup>1</sup>O<sub>2</sub> responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the <sup>1</sup>O<sub>2</sub> signaling. Moreover, increased expression of two enzyme genes, the <i>SULFOTRANSFERASE ST2A</i> (<i>ST2a</i>) and the early <sup>1</sup>O<sub>2</sub>-responsive <i>IAA-LEUCINE RESISTANCE (ILR)-LIKE6</i> (<i>ILL6</i>), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and <sup>1</sup>O<sub>2</sub> acclimation (versus cell death) responses to neighboring weeds.</p>\",\"PeriodicalId\":12632,\"journal\":{\"name\":\"Frontiers in Plant Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11368760/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.3389/fpls.2024.964476\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Plant Science","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3389/fpls.2024.964476","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
Plant competition cues activate a singlet oxygen signaling pathway in Arabidopsis thaliana.
Oxidative stress responses of Arabidopsis to reflected low red to far-red signals (R:FR ≈ 0.3) generated by neighboring weeds or an artificial source of FR light were compared with a weed-free control (R:FR ≈1.6). In the low R:FR treatments, induction of the shade avoidance responses (SAR) coincided with increased leaf production of singlet oxygen (1O2). This 1O2 increase was not due to protochlorophyllide accumulation and did not cause cell death. Chemical treatments, however, with 5-aminolevulinic acid (the precursor of tetrapyrrole biosynthesis) and glutathione (a quinone A reductant) enhanced cell death and growth inhibition. RNA sequencing revealed that transcriptome responses to the reflected low R:FR light treatments minimally resembled previously known Arabidopsis1O2 generating systems that rapidly generate 1O2 following a dark to light transfer. The upregulation of only a few early 1O2 responsive genes (6 out of 1931) in the reflected low R:FR treatments suggested specificity of the 1O2 signaling. Moreover, increased expression of two enzyme genes, the SULFOTRANSFERASE ST2A (ST2a) and the early 1O2-responsive IAA-LEUCINE RESISTANCE (ILR)-LIKE6 (ILL6), which negatively regulate jasmonate level, suggested that repression of bioactive JAs may promote the shade avoidance (versus defense) and 1O2 acclimation (versus cell death) responses to neighboring weeds.
期刊介绍:
In an ever changing world, plant science is of the utmost importance for securing the future well-being of humankind. Plants provide oxygen, food, feed, fibers, and building materials. In addition, they are a diverse source of industrial and pharmaceutical chemicals. Plants are centrally important to the health of ecosystems, and their understanding is critical for learning how to manage and maintain a sustainable biosphere. Plant science is extremely interdisciplinary, reaching from agricultural science to paleobotany, and molecular physiology to ecology. It uses the latest developments in computer science, optics, molecular biology and genomics to address challenges in model systems, agricultural crops, and ecosystems. Plant science research inquires into the form, function, development, diversity, reproduction, evolution and uses of both higher and lower plants and their interactions with other organisms throughout the biosphere. Frontiers in Plant Science welcomes outstanding contributions in any field of plant science from basic to applied research, from organismal to molecular studies, from single plant analysis to studies of populations and whole ecosystems, and from molecular to biophysical to computational approaches.
Frontiers in Plant Science publishes articles on the most outstanding discoveries across a wide research spectrum of Plant Science. The mission of Frontiers in Plant Science is to bring all relevant Plant Science areas together on a single platform.