Xiuqiao Liu , Hangren Li , Dongxing Zheng , Jie Tu , Guoqiang Xi , Xudong Liu , Rong Wu , Dongfei Lu , Qingxiao Wang , Xixiang Zhang , Jianjun Tian , Linxing Zhang
{"title":"通过宽化学加工窗口实现 ZrO2 薄膜的稳健铁电性和低矫顽力场","authors":"Xiuqiao Liu , Hangren Li , Dongxing Zheng , Jie Tu , Guoqiang Xi , Xudong Liu , Rong Wu , Dongfei Lu , Qingxiao Wang , Xixiang Zhang , Jianjun Tian , Linxing Zhang","doi":"10.1016/j.nantod.2024.102470","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorite-based ferroelectric thin films offer significant potential as candidates for next-generation non-volatile memory logic devices due to their excellent compatibility with existing silicon-based semiconductor technology. However, the challenge lies in the complex preparation of stable fluorite based ferroelectric thin films, as several metastable phases typically exist under narrow and unpredictable experimental conditions, such as harsh temperature, specific thickness, unique strain conditions <em>et al</em>. Here, stable and cost-effective ZrO<sub>2</sub> ferroelectric thin film with tetragonal-orthorhombic-monoclinic phase transition can be fabricated in a wide chemical-processing window. Notably, within a considerable temperature range (∼200 °C) and thickness range (∼250 nm), the ZrO<sub>2</sub> films show robust ferroelectric polarization with a peak value of around 15 μC/cm<sup>2</sup>, comparable to previous reports. The stable ferroelectric phase range can be controlled by adjusting oxygen content and implementing strain engineering. Intriguingly, we further achieve the highest remanent polarization of 20.15 μC/cm<sup>2</sup> and the lowest coercive field of 1.18 MV/cm by a combination of annealing times and strain engineering. Synchrotron-based X-ray absorption spectroscopy has revealed oxygen tetrahedral distortions, indicating the transition of from the tetragonal to orthorhombic phases. Furthermore, the migration of oxygen ions between the ferroelectric and antiferroelectric phase under electric field activation has been directly detected through integrated differential phase-contrast scanning transmission electron microscopy. This study significantly contributes to the further development of the fabrication procedure and enhances the understanding of the ferroelectric origin for ZrO<sub>2</sub>-based fluorite ferroelectric thin films.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"59 ","pages":"Article 102470"},"PeriodicalIF":13.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust ferroelectric and low coercive field in ZrO2 thin film through wide chemical-processing window\",\"authors\":\"Xiuqiao Liu , Hangren Li , Dongxing Zheng , Jie Tu , Guoqiang Xi , Xudong Liu , Rong Wu , Dongfei Lu , Qingxiao Wang , Xixiang Zhang , Jianjun Tian , Linxing Zhang\",\"doi\":\"10.1016/j.nantod.2024.102470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluorite-based ferroelectric thin films offer significant potential as candidates for next-generation non-volatile memory logic devices due to their excellent compatibility with existing silicon-based semiconductor technology. However, the challenge lies in the complex preparation of stable fluorite based ferroelectric thin films, as several metastable phases typically exist under narrow and unpredictable experimental conditions, such as harsh temperature, specific thickness, unique strain conditions <em>et al</em>. Here, stable and cost-effective ZrO<sub>2</sub> ferroelectric thin film with tetragonal-orthorhombic-monoclinic phase transition can be fabricated in a wide chemical-processing window. Notably, within a considerable temperature range (∼200 °C) and thickness range (∼250 nm), the ZrO<sub>2</sub> films show robust ferroelectric polarization with a peak value of around 15 μC/cm<sup>2</sup>, comparable to previous reports. The stable ferroelectric phase range can be controlled by adjusting oxygen content and implementing strain engineering. Intriguingly, we further achieve the highest remanent polarization of 20.15 μC/cm<sup>2</sup> and the lowest coercive field of 1.18 MV/cm by a combination of annealing times and strain engineering. Synchrotron-based X-ray absorption spectroscopy has revealed oxygen tetrahedral distortions, indicating the transition of from the tetragonal to orthorhombic phases. Furthermore, the migration of oxygen ions between the ferroelectric and antiferroelectric phase under electric field activation has been directly detected through integrated differential phase-contrast scanning transmission electron microscopy. This study significantly contributes to the further development of the fabrication procedure and enhances the understanding of the ferroelectric origin for ZrO<sub>2</sub>-based fluorite ferroelectric thin films.</p></div>\",\"PeriodicalId\":395,\"journal\":{\"name\":\"Nano Today\",\"volume\":\"59 \",\"pages\":\"Article 102470\"},\"PeriodicalIF\":13.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Today\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1748013224003268\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003268","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Robust ferroelectric and low coercive field in ZrO2 thin film through wide chemical-processing window
Fluorite-based ferroelectric thin films offer significant potential as candidates for next-generation non-volatile memory logic devices due to their excellent compatibility with existing silicon-based semiconductor technology. However, the challenge lies in the complex preparation of stable fluorite based ferroelectric thin films, as several metastable phases typically exist under narrow and unpredictable experimental conditions, such as harsh temperature, specific thickness, unique strain conditions et al. Here, stable and cost-effective ZrO2 ferroelectric thin film with tetragonal-orthorhombic-monoclinic phase transition can be fabricated in a wide chemical-processing window. Notably, within a considerable temperature range (∼200 °C) and thickness range (∼250 nm), the ZrO2 films show robust ferroelectric polarization with a peak value of around 15 μC/cm2, comparable to previous reports. The stable ferroelectric phase range can be controlled by adjusting oxygen content and implementing strain engineering. Intriguingly, we further achieve the highest remanent polarization of 20.15 μC/cm2 and the lowest coercive field of 1.18 MV/cm by a combination of annealing times and strain engineering. Synchrotron-based X-ray absorption spectroscopy has revealed oxygen tetrahedral distortions, indicating the transition of from the tetragonal to orthorhombic phases. Furthermore, the migration of oxygen ions between the ferroelectric and antiferroelectric phase under electric field activation has been directly detected through integrated differential phase-contrast scanning transmission electron microscopy. This study significantly contributes to the further development of the fabrication procedure and enhances the understanding of the ferroelectric origin for ZrO2-based fluorite ferroelectric thin films.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.