{"title":"基于非线性振动响应的推力球轴承轴垫圈歪斜检测","authors":"Hosein Razavian, Alireza Shooshtari","doi":"10.1016/j.ijnonlinmec.2024.104880","DOIUrl":null,"url":null,"abstract":"<div><p>Bearing misalignments are common defects in machinery. One of the most important types of that is the angular misalignment of the bearing rings. In this study, crookedness specific signature related to thrust ball bearing shaft washer is investigated. For this purpose, a vertical structural thrust ball bearing test rig was considered. In the following, effects of rotational shaft speed, crookedness value and axial external force on the shaft washer crookedness signature were studied at several relative positions of sensors. It is shown that crookedness of thrust ball bearing shaft washer has specific frequency and sensor phase difference pattern in the nonlinear vibration responses. Also, the experimental results are applied to validate results of a 4-dof nonlinear dynamical system related to the shaft washer crookedness of thrust ball bearing. In the next step, by comparing input and output amplitude and also existence of flip bifurcation, it is illustrated that this system is a nonlinear dynamical experimental system. It was shown that this nonlinearity makes crooked shaft washer pattern difficult to identify. Finally, by the phase portrait of the sensor response and the relative error value of crookedness signature frequencies, it is clear that the crookedness of shaft washer creates quasi-chaotic behavior supporting crookedness signature frequencies and phase pattern as a supplement property.</p></div>","PeriodicalId":50303,"journal":{"name":"International Journal of Non-Linear Mechanics","volume":"167 ","pages":"Article 104880"},"PeriodicalIF":2.8000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crookedness detection of thrust ball bearing shaft washer based on nonlinear vibration responses\",\"authors\":\"Hosein Razavian, Alireza Shooshtari\",\"doi\":\"10.1016/j.ijnonlinmec.2024.104880\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Bearing misalignments are common defects in machinery. One of the most important types of that is the angular misalignment of the bearing rings. In this study, crookedness specific signature related to thrust ball bearing shaft washer is investigated. For this purpose, a vertical structural thrust ball bearing test rig was considered. In the following, effects of rotational shaft speed, crookedness value and axial external force on the shaft washer crookedness signature were studied at several relative positions of sensors. It is shown that crookedness of thrust ball bearing shaft washer has specific frequency and sensor phase difference pattern in the nonlinear vibration responses. Also, the experimental results are applied to validate results of a 4-dof nonlinear dynamical system related to the shaft washer crookedness of thrust ball bearing. In the next step, by comparing input and output amplitude and also existence of flip bifurcation, it is illustrated that this system is a nonlinear dynamical experimental system. It was shown that this nonlinearity makes crooked shaft washer pattern difficult to identify. Finally, by the phase portrait of the sensor response and the relative error value of crookedness signature frequencies, it is clear that the crookedness of shaft washer creates quasi-chaotic behavior supporting crookedness signature frequencies and phase pattern as a supplement property.</p></div>\",\"PeriodicalId\":50303,\"journal\":{\"name\":\"International Journal of Non-Linear Mechanics\",\"volume\":\"167 \",\"pages\":\"Article 104880\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Non-Linear Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020746224002452\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Non-Linear Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020746224002452","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Crookedness detection of thrust ball bearing shaft washer based on nonlinear vibration responses
Bearing misalignments are common defects in machinery. One of the most important types of that is the angular misalignment of the bearing rings. In this study, crookedness specific signature related to thrust ball bearing shaft washer is investigated. For this purpose, a vertical structural thrust ball bearing test rig was considered. In the following, effects of rotational shaft speed, crookedness value and axial external force on the shaft washer crookedness signature were studied at several relative positions of sensors. It is shown that crookedness of thrust ball bearing shaft washer has specific frequency and sensor phase difference pattern in the nonlinear vibration responses. Also, the experimental results are applied to validate results of a 4-dof nonlinear dynamical system related to the shaft washer crookedness of thrust ball bearing. In the next step, by comparing input and output amplitude and also existence of flip bifurcation, it is illustrated that this system is a nonlinear dynamical experimental system. It was shown that this nonlinearity makes crooked shaft washer pattern difficult to identify. Finally, by the phase portrait of the sensor response and the relative error value of crookedness signature frequencies, it is clear that the crookedness of shaft washer creates quasi-chaotic behavior supporting crookedness signature frequencies and phase pattern as a supplement property.
期刊介绍:
The International Journal of Non-Linear Mechanics provides a specific medium for dissemination of high-quality research results in the various areas of theoretical, applied, and experimental mechanics of solids, fluids, structures, and systems where the phenomena are inherently non-linear.
The journal brings together original results in non-linear problems in elasticity, plasticity, dynamics, vibrations, wave-propagation, rheology, fluid-structure interaction systems, stability, biomechanics, micro- and nano-structures, materials, metamaterials, and in other diverse areas.
Papers may be analytical, computational or experimental in nature. Treatments of non-linear differential equations wherein solutions and properties of solutions are emphasized but physical aspects are not adequately relevant, will not be considered for possible publication. Both deterministic and stochastic approaches are fostered. Contributions pertaining to both established and emerging fields are encouraged.