基于视觉的触觉传感器三维位移测量的改进 DFD 方法

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Sensors and Actuators A-physical Pub Date : 2024-09-03 DOI:10.1016/j.sna.2024.115863
{"title":"基于视觉的触觉传感器三维位移测量的改进 DFD 方法","authors":"","doi":"10.1016/j.sna.2024.115863","DOIUrl":null,"url":null,"abstract":"<div><p>Currently, traditional tactile sensors based on the principles of capacitance or piezoelectricity have complex structures and difficulty in obtaining tactile information. A vision-based tactile sensor is introduced which can realize visual measurement of three-dimensional displacement in this paper. The vision-based tactile sensor is mainly composed of an elastomer embedded with marker point array, a transparent acrylic plate, 8 LED lights and a micro monocular camera. The elastomer deforms when the tactile sensor contacts an object, and the micro monocular camera is used to capture the elastomer deformation and transmit it to the computer in the form of image, and then the three-dimensional displacement information is obtained by processing the image. In order to more accurately recover the missing dimensional information in the three-dimensional displacement detection of monocular camera, an improved DFD (Depth from Defocus) method based on finite element theory is proposed in this paper. It is verified by experiments that the improved DFD method proposed in this paper can measure the three-dimensional displacement information more accurately compared with the DFD method. In addition, an experiment is conducted to prove the robustness of the improved DFD method on the robotic gripper. The experimental results demonstrate that the three-dimensional displacement measurement method proposed in this paper can provide technical support for the design and development of vision-based tactile sensors.</p></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An improved DFD method for three-dimensional displacement measurement of vision-based tactile sensor\",\"authors\":\"\",\"doi\":\"10.1016/j.sna.2024.115863\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Currently, traditional tactile sensors based on the principles of capacitance or piezoelectricity have complex structures and difficulty in obtaining tactile information. A vision-based tactile sensor is introduced which can realize visual measurement of three-dimensional displacement in this paper. The vision-based tactile sensor is mainly composed of an elastomer embedded with marker point array, a transparent acrylic plate, 8 LED lights and a micro monocular camera. The elastomer deforms when the tactile sensor contacts an object, and the micro monocular camera is used to capture the elastomer deformation and transmit it to the computer in the form of image, and then the three-dimensional displacement information is obtained by processing the image. In order to more accurately recover the missing dimensional information in the three-dimensional displacement detection of monocular camera, an improved DFD (Depth from Defocus) method based on finite element theory is proposed in this paper. It is verified by experiments that the improved DFD method proposed in this paper can measure the three-dimensional displacement information more accurately compared with the DFD method. In addition, an experiment is conducted to prove the robustness of the improved DFD method on the robotic gripper. The experimental results demonstrate that the three-dimensional displacement measurement method proposed in this paper can provide technical support for the design and development of vision-based tactile sensors.</p></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424724008574\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424724008574","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

目前,基于电容或压电原理的传统触觉传感器结构复杂,难以获得触觉信息。本文介绍了一种基于视觉的触觉传感器,可实现三维位移的视觉测量。基于视觉的触觉传感器主要由嵌入标记点阵列的弹性体、透明亚克力板、8 个 LED 灯和微型单目摄像头组成。当触觉传感器接触到物体时,弹性体会发生形变,微型单目摄像头用于捕捉弹性体的形变,并以图像的形式传输到计算机,然后通过处理图像获得三维位移信息。为了更准确地恢复单目摄像头三维位移检测中缺失的尺寸信息,本文提出了一种基于有限元理论的改进型 DFD(离焦深度)方法。实验验证了本文提出的改进 DFD 方法与 DFD 方法相比,能更精确地测量三维位移信息。此外,本文还通过实验证明了改进 DFD 方法在机械手上的鲁棒性。实验结果表明,本文提出的三维位移测量方法可以为基于视觉的触觉传感器的设计和开发提供技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved DFD method for three-dimensional displacement measurement of vision-based tactile sensor

Currently, traditional tactile sensors based on the principles of capacitance or piezoelectricity have complex structures and difficulty in obtaining tactile information. A vision-based tactile sensor is introduced which can realize visual measurement of three-dimensional displacement in this paper. The vision-based tactile sensor is mainly composed of an elastomer embedded with marker point array, a transparent acrylic plate, 8 LED lights and a micro monocular camera. The elastomer deforms when the tactile sensor contacts an object, and the micro monocular camera is used to capture the elastomer deformation and transmit it to the computer in the form of image, and then the three-dimensional displacement information is obtained by processing the image. In order to more accurately recover the missing dimensional information in the three-dimensional displacement detection of monocular camera, an improved DFD (Depth from Defocus) method based on finite element theory is proposed in this paper. It is verified by experiments that the improved DFD method proposed in this paper can measure the three-dimensional displacement information more accurately compared with the DFD method. In addition, an experiment is conducted to prove the robustness of the improved DFD method on the robotic gripper. The experimental results demonstrate that the three-dimensional displacement measurement method proposed in this paper can provide technical support for the design and development of vision-based tactile sensors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
期刊最新文献
High-selectivity NIR amorphous silicon-based plasmonic photodetector at room temperature 2D beam steering using phased array of MEMS tunable grating couplers Focus-switchable piezoelectric actuator: A bionic thin-plate design inspired by conch structure Methods of fabrication and modeling of CMUTs – A review Effect of material anisotropy on the first-order vibration of piezoelectric oscillators in circular plate configurations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1