基于拓扑优化的质子交换膜燃料电池冷却通道传热性能研究

IF 5.1 3区 工程技术 Q2 ENERGY & FUELS Thermal Science and Engineering Progress Pub Date : 2024-09-01 DOI:10.1016/j.tsep.2024.102857
{"title":"基于拓扑优化的质子交换膜燃料电池冷却通道传热性能研究","authors":"","doi":"10.1016/j.tsep.2024.102857","DOIUrl":null,"url":null,"abstract":"<div><p>Based on topology optimization method, a dual-objective function topology optimization model containing minimum average temperature and minimum flow power dissipation was established in this study. Coupled with the uneven heat generation model of proton exchange membrane fuel cells, the optimal layout scheme under the target operating conditions was adaptively obtained. The effects of volume fraction, objective function weight, and parabolic inlet velocity on the flow channel structure and cooling performance of topological cooling plates were studied. The results indicate that with the increase of volume fraction, the area of fluid region increases, the average temperature and the pressure drop of cooling plate gradually decrease. At the volume fraction of 0.5, the cooling plate has the best cooling performance. The temperature difference and maximum temperature reach the minimum values of 5.45 K and 347.58 K, respectively. When the volume fraction increases from 0.4 to 0.6, the pressure difference decreases by 67.64 %. With the increase of temperature weight coefficient, the area of high-temperature area gradually decreases, and the temperature uniformity is significantly improved. When the inlet velocity of coolant is 0.025 m/s and the temperature weight coefficient is 0.9, the average and maximum temperatures of cooling plate reach the lowest values, which are 343.53 K and 344.51 K, respectively. The maximum temperature of cooling plate under parabolic inlet velocity is of 347.87 K, which is 0.29 K higher than that under uniform inlet velocity. Non-uniform coolant inlet velocity will lead to a decrease in heat transfer capacity of cooling plate and an increase in coolant power consumption.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on heat transfer performance of cooling channels in proton exchange membrane fuel cells based on topology optimization\",\"authors\":\"\",\"doi\":\"10.1016/j.tsep.2024.102857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on topology optimization method, a dual-objective function topology optimization model containing minimum average temperature and minimum flow power dissipation was established in this study. Coupled with the uneven heat generation model of proton exchange membrane fuel cells, the optimal layout scheme under the target operating conditions was adaptively obtained. The effects of volume fraction, objective function weight, and parabolic inlet velocity on the flow channel structure and cooling performance of topological cooling plates were studied. The results indicate that with the increase of volume fraction, the area of fluid region increases, the average temperature and the pressure drop of cooling plate gradually decrease. At the volume fraction of 0.5, the cooling plate has the best cooling performance. The temperature difference and maximum temperature reach the minimum values of 5.45 K and 347.58 K, respectively. When the volume fraction increases from 0.4 to 0.6, the pressure difference decreases by 67.64 %. With the increase of temperature weight coefficient, the area of high-temperature area gradually decreases, and the temperature uniformity is significantly improved. When the inlet velocity of coolant is 0.025 m/s and the temperature weight coefficient is 0.9, the average and maximum temperatures of cooling plate reach the lowest values, which are 343.53 K and 344.51 K, respectively. The maximum temperature of cooling plate under parabolic inlet velocity is of 347.87 K, which is 0.29 K higher than that under uniform inlet velocity. Non-uniform coolant inlet velocity will lead to a decrease in heat transfer capacity of cooling plate and an increase in coolant power consumption.</p></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245190492400475X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245190492400475X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究基于拓扑优化方法,建立了包含最小平均温度和最小流动功率耗散的双目标函数拓扑优化模型。结合质子交换膜燃料电池的不均匀发热模型,自适应地得到了目标运行条件下的最优布局方案。研究了体积分数、目标函数权重和抛物线入口速度对拓扑冷却板流道结构和冷却性能的影响。结果表明,随着体积分数的增加,流体区域面积增大,冷却板的平均温度和压降逐渐减小。当体积分数为 0.5 时,冷却板的冷却性能最好。温差和最高温度分别达到最小值 5.45 K 和 347.58 K。当体积分数从 0.4 增加到 0.6 时,压力差降低了 67.64%。随着温度重量系数的增加,高温区面积逐渐减小,温度均匀性明显改善。当冷却剂入口速度为 0.025 m/s、温度重量系数为 0.9 时,冷却板的平均温度和最高温度达到最低值,分别为 343.53 K 和 344.51 K。抛物线入口速度下冷却板的最高温度为 347.87 K,比均匀入口速度下的最高温度高 0.29 K。冷却剂入口速度不均匀会导致冷却板传热能力下降,冷却剂功耗增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study on heat transfer performance of cooling channels in proton exchange membrane fuel cells based on topology optimization

Based on topology optimization method, a dual-objective function topology optimization model containing minimum average temperature and minimum flow power dissipation was established in this study. Coupled with the uneven heat generation model of proton exchange membrane fuel cells, the optimal layout scheme under the target operating conditions was adaptively obtained. The effects of volume fraction, objective function weight, and parabolic inlet velocity on the flow channel structure and cooling performance of topological cooling plates were studied. The results indicate that with the increase of volume fraction, the area of fluid region increases, the average temperature and the pressure drop of cooling plate gradually decrease. At the volume fraction of 0.5, the cooling plate has the best cooling performance. The temperature difference and maximum temperature reach the minimum values of 5.45 K and 347.58 K, respectively. When the volume fraction increases from 0.4 to 0.6, the pressure difference decreases by 67.64 %. With the increase of temperature weight coefficient, the area of high-temperature area gradually decreases, and the temperature uniformity is significantly improved. When the inlet velocity of coolant is 0.025 m/s and the temperature weight coefficient is 0.9, the average and maximum temperatures of cooling plate reach the lowest values, which are 343.53 K and 344.51 K, respectively. The maximum temperature of cooling plate under parabolic inlet velocity is of 347.87 K, which is 0.29 K higher than that under uniform inlet velocity. Non-uniform coolant inlet velocity will lead to a decrease in heat transfer capacity of cooling plate and an increase in coolant power consumption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thermal Science and Engineering Progress
Thermal Science and Engineering Progress Chemical Engineering-Fluid Flow and Transfer Processes
CiteScore
7.20
自引率
10.40%
发文量
327
审稿时长
41 days
期刊介绍: Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.
期刊最新文献
Investigation of laminar flow and heat transfer performance of Gallium alloy based nanofluids in minichannel heat sink A reconfigurable architecture for maximizing energy harvesting of thermoelectric generators in non-stationary conditions Optimization of zero superheat control at the evaporator outlet: Application of EXV and pressure regulation valve Predicting the subcutaneous temperature in cryolipolysis using deep operator networks Investigation into the mechanism of ignition of magnesium alloy plates by high-temperature molten droplet
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1