{"title":"基于拓扑优化的质子交换膜燃料电池冷却通道传热性能研究","authors":"","doi":"10.1016/j.tsep.2024.102857","DOIUrl":null,"url":null,"abstract":"<div><p>Based on topology optimization method, a dual-objective function topology optimization model containing minimum average temperature and minimum flow power dissipation was established in this study. Coupled with the uneven heat generation model of proton exchange membrane fuel cells, the optimal layout scheme under the target operating conditions was adaptively obtained. The effects of volume fraction, objective function weight, and parabolic inlet velocity on the flow channel structure and cooling performance of topological cooling plates were studied. The results indicate that with the increase of volume fraction, the area of fluid region increases, the average temperature and the pressure drop of cooling plate gradually decrease. At the volume fraction of 0.5, the cooling plate has the best cooling performance. The temperature difference and maximum temperature reach the minimum values of 5.45 K and 347.58 K, respectively. When the volume fraction increases from 0.4 to 0.6, the pressure difference decreases by 67.64 %. With the increase of temperature weight coefficient, the area of high-temperature area gradually decreases, and the temperature uniformity is significantly improved. When the inlet velocity of coolant is 0.025 m/s and the temperature weight coefficient is 0.9, the average and maximum temperatures of cooling plate reach the lowest values, which are 343.53 K and 344.51 K, respectively. The maximum temperature of cooling plate under parabolic inlet velocity is of 347.87 K, which is 0.29 K higher than that under uniform inlet velocity. Non-uniform coolant inlet velocity will lead to a decrease in heat transfer capacity of cooling plate and an increase in coolant power consumption.</p></div>","PeriodicalId":23062,"journal":{"name":"Thermal Science and Engineering Progress","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on heat transfer performance of cooling channels in proton exchange membrane fuel cells based on topology optimization\",\"authors\":\"\",\"doi\":\"10.1016/j.tsep.2024.102857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Based on topology optimization method, a dual-objective function topology optimization model containing minimum average temperature and minimum flow power dissipation was established in this study. Coupled with the uneven heat generation model of proton exchange membrane fuel cells, the optimal layout scheme under the target operating conditions was adaptively obtained. The effects of volume fraction, objective function weight, and parabolic inlet velocity on the flow channel structure and cooling performance of topological cooling plates were studied. The results indicate that with the increase of volume fraction, the area of fluid region increases, the average temperature and the pressure drop of cooling plate gradually decrease. At the volume fraction of 0.5, the cooling plate has the best cooling performance. The temperature difference and maximum temperature reach the minimum values of 5.45 K and 347.58 K, respectively. When the volume fraction increases from 0.4 to 0.6, the pressure difference decreases by 67.64 %. With the increase of temperature weight coefficient, the area of high-temperature area gradually decreases, and the temperature uniformity is significantly improved. When the inlet velocity of coolant is 0.025 m/s and the temperature weight coefficient is 0.9, the average and maximum temperatures of cooling plate reach the lowest values, which are 343.53 K and 344.51 K, respectively. The maximum temperature of cooling plate under parabolic inlet velocity is of 347.87 K, which is 0.29 K higher than that under uniform inlet velocity. Non-uniform coolant inlet velocity will lead to a decrease in heat transfer capacity of cooling plate and an increase in coolant power consumption.</p></div>\",\"PeriodicalId\":23062,\"journal\":{\"name\":\"Thermal Science and Engineering Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thermal Science and Engineering Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S245190492400475X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thermal Science and Engineering Progress","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S245190492400475X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Study on heat transfer performance of cooling channels in proton exchange membrane fuel cells based on topology optimization
Based on topology optimization method, a dual-objective function topology optimization model containing minimum average temperature and minimum flow power dissipation was established in this study. Coupled with the uneven heat generation model of proton exchange membrane fuel cells, the optimal layout scheme under the target operating conditions was adaptively obtained. The effects of volume fraction, objective function weight, and parabolic inlet velocity on the flow channel structure and cooling performance of topological cooling plates were studied. The results indicate that with the increase of volume fraction, the area of fluid region increases, the average temperature and the pressure drop of cooling plate gradually decrease. At the volume fraction of 0.5, the cooling plate has the best cooling performance. The temperature difference and maximum temperature reach the minimum values of 5.45 K and 347.58 K, respectively. When the volume fraction increases from 0.4 to 0.6, the pressure difference decreases by 67.64 %. With the increase of temperature weight coefficient, the area of high-temperature area gradually decreases, and the temperature uniformity is significantly improved. When the inlet velocity of coolant is 0.025 m/s and the temperature weight coefficient is 0.9, the average and maximum temperatures of cooling plate reach the lowest values, which are 343.53 K and 344.51 K, respectively. The maximum temperature of cooling plate under parabolic inlet velocity is of 347.87 K, which is 0.29 K higher than that under uniform inlet velocity. Non-uniform coolant inlet velocity will lead to a decrease in heat transfer capacity of cooling plate and an increase in coolant power consumption.
期刊介绍:
Thermal Science and Engineering Progress (TSEP) publishes original, high-quality research articles that span activities ranging from fundamental scientific research and discussion of the more controversial thermodynamic theories, to developments in thermal engineering that are in many instances examples of the way scientists and engineers are addressing the challenges facing a growing population – smart cities and global warming – maximising thermodynamic efficiencies and minimising all heat losses. It is intended that these will be of current relevance and interest to industry, academia and other practitioners. It is evident that many specialised journals in thermal and, to some extent, in fluid disciplines tend to focus on topics that can be classified as fundamental in nature, or are ‘applied’ and near-market. Thermal Science and Engineering Progress will bridge the gap between these two areas, allowing authors to make an easy choice, should they or a journal editor feel that their papers are ‘out of scope’ when considering other journals. The range of topics covered by Thermal Science and Engineering Progress addresses the rapid rate of development being made in thermal transfer processes as they affect traditional fields, and important growth in the topical research areas of aerospace, thermal biological and medical systems, electronics and nano-technologies, renewable energy systems, food production (including agriculture), and the need to minimise man-made thermal impacts on climate change. Review articles on appropriate topics for TSEP are encouraged, although until TSEP is fully established, these will be limited in number. Before submitting such articles, please contact one of the Editors, or a member of the Editorial Advisory Board with an outline of your proposal and your expertise in the area of your review.