从原子尺度了解金属镍电化学增材制造过程中的微结构演变

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-09-01 DOI:10.1016/j.matdes.2024.113288
{"title":"从原子尺度了解金属镍电化学增材制造过程中的微结构演变","authors":"","doi":"10.1016/j.matdes.2024.113288","DOIUrl":null,"url":null,"abstract":"<div><p>Atomic-level manufacturing is fundamentally concerned with the precise removal, addition, and migration of material at the atomic and close-to-atomic scale (ACS). Tip-based electrochemical deposition, a quintessential ACS electrochemical additive manufacturing technique, offers promising prospects for achieving bottom-up fabrication of metallic micro/nano structures. However, the complex physicochemical reactions involved in electrodes lead to a limited understanding of the mechanisms underlying atomic electrodeposition and structural evolution. For the first time, this study proposes electric double-layer controlled electrochemical kinetics and investigates the effect of direct current (DC) and pulse current (PC) on nickel atomic electrodeposition using molecular dynamics (MD) simulations. The findings reveal that compared to DC electrodeposition, PC electrodeposition results in more orderly deposition morphology, improved surface smoothness, reduced dislocation density, and lower crystal distortion, with these effects being particularly pronounced under low pulse duty ratio conditions. In addition, the pulse frequency significantly influences the morphology and structure of the deposit. The high pulse frequency yields smoother surfaces with local protrusions, while the low frequency favors the formation of orderly and dense structures excepting slightly increased roughness. This study provides critical insights into understanding the microscopic mechanisms of atomic-scale electrodeposition processes and achieving atomically controlled tip-based electrochemical additive manufacturing of micro/nanodevices.</p></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":null,"pages":null},"PeriodicalIF":7.6000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0264127524006634/pdfft?md5=9ef02cfe569e05d86c6191f9062e03b9&pid=1-s2.0-S0264127524006634-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Atomic-scale understanding of microstructural evolution in electrochemical additive manufacturing of metallic nickel\",\"authors\":\"\",\"doi\":\"10.1016/j.matdes.2024.113288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Atomic-level manufacturing is fundamentally concerned with the precise removal, addition, and migration of material at the atomic and close-to-atomic scale (ACS). Tip-based electrochemical deposition, a quintessential ACS electrochemical additive manufacturing technique, offers promising prospects for achieving bottom-up fabrication of metallic micro/nano structures. However, the complex physicochemical reactions involved in electrodes lead to a limited understanding of the mechanisms underlying atomic electrodeposition and structural evolution. For the first time, this study proposes electric double-layer controlled electrochemical kinetics and investigates the effect of direct current (DC) and pulse current (PC) on nickel atomic electrodeposition using molecular dynamics (MD) simulations. The findings reveal that compared to DC electrodeposition, PC electrodeposition results in more orderly deposition morphology, improved surface smoothness, reduced dislocation density, and lower crystal distortion, with these effects being particularly pronounced under low pulse duty ratio conditions. In addition, the pulse frequency significantly influences the morphology and structure of the deposit. The high pulse frequency yields smoother surfaces with local protrusions, while the low frequency favors the formation of orderly and dense structures excepting slightly increased roughness. This study provides critical insights into understanding the microscopic mechanisms of atomic-scale electrodeposition processes and achieving atomically controlled tip-based electrochemical additive manufacturing of micro/nanodevices.</p></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0264127524006634/pdfft?md5=9ef02cfe569e05d86c6191f9062e03b9&pid=1-s2.0-S0264127524006634-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524006634\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524006634","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

原子级制造主要涉及在原子和近原子尺度(ACS)上精确去除、添加和迁移材料。尖端电化学沉积是一种典型的 ACS 电化学增材制造技术,为实现自下而上的金属微/纳米结构制造提供了广阔的前景。然而,由于电极涉及复杂的物理化学反应,人们对原子电沉积和结构演变的内在机制了解有限。本研究首次提出了电双层控制电化学动力学,并利用分子动力学(MD)模拟研究了直流电(DC)和脉冲电流(PC)对镍原子电沉积的影响。研究结果表明,与直流电沉积相比,PC 电沉积能产生更有序的沉积形态、更好的表面光滑度、更低的位错密度和更低的晶体畸变,这些效应在低脉冲占空比条件下尤为明显。此外,脉冲频率对沉积物的形态和结构也有显著影响。高脉冲频率产生的表面更光滑,并带有局部突起,而低脉冲频率则有利于形成有序和致密的结构,只是粗糙度略有增加。这项研究为理解原子尺度电沉积过程的微观机制以及实现基于原子控制的尖端电化学添加制造微/纳米器件提供了重要的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Atomic-scale understanding of microstructural evolution in electrochemical additive manufacturing of metallic nickel

Atomic-level manufacturing is fundamentally concerned with the precise removal, addition, and migration of material at the atomic and close-to-atomic scale (ACS). Tip-based electrochemical deposition, a quintessential ACS electrochemical additive manufacturing technique, offers promising prospects for achieving bottom-up fabrication of metallic micro/nano structures. However, the complex physicochemical reactions involved in electrodes lead to a limited understanding of the mechanisms underlying atomic electrodeposition and structural evolution. For the first time, this study proposes electric double-layer controlled electrochemical kinetics and investigates the effect of direct current (DC) and pulse current (PC) on nickel atomic electrodeposition using molecular dynamics (MD) simulations. The findings reveal that compared to DC electrodeposition, PC electrodeposition results in more orderly deposition morphology, improved surface smoothness, reduced dislocation density, and lower crystal distortion, with these effects being particularly pronounced under low pulse duty ratio conditions. In addition, the pulse frequency significantly influences the morphology and structure of the deposit. The high pulse frequency yields smoother surfaces with local protrusions, while the low frequency favors the formation of orderly and dense structures excepting slightly increased roughness. This study provides critical insights into understanding the microscopic mechanisms of atomic-scale electrodeposition processes and achieving atomically controlled tip-based electrochemical additive manufacturing of micro/nanodevices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Structural design and characterization of hybrid hierarchical lattice structures based on sheet-network Triply periodic Minimal surface topology Micro-nanojauges design to monitor surface mechanical state during high temperature oxidation of metals with application to 17-4PH stainless steel Magnetic alginate microrobots with dual-motion patterns through centrifugally driven flow control In-situ monitoring of multi-physical dynamics in ceramic additive manufacturing Martensite size and morphology influence on strain distribution and micro-damage evolution in dual-phase steels; comparing segregation-neutralised and banded grades
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1