同轴电纺富锂层状氧化物@Spinel核壳异质结构纳米纤维,提高稳定性和电化学性能

IF 5.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Research Bulletin Pub Date : 2024-08-23 DOI:10.1016/j.materresbull.2024.113057
{"title":"同轴电纺富锂层状氧化物@Spinel核壳异质结构纳米纤维,提高稳定性和电化学性能","authors":"","doi":"10.1016/j.materresbull.2024.113057","DOIUrl":null,"url":null,"abstract":"<div><p>Lithium-rich layered oxides (LLO) possessing high specific capacity has the limitation of voltage fade, poor high C-rate performance and low conductivity. Spinel coating on LLO surface is known to mitigate the voltage fade, however, enabling high C-rate performance remains challenging. In this study, LLO nanofiber core with composition 0.6Li<sub>2</sub>MnO<sub>3</sub>·0.4LiMn<sub>0.25</sub>Ni<sub>0.38</sub>Co<sub>0.37</sub>O<sub>2</sub> is prepared by electrospinning process and the same is coated with spinel LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O<sub>4</sub> shell to obtain LLO/spinel (LLO/S) core-shell heterostructure. The spinel shell coating is accomplished (i) by a novel co-axial (CA) electrospinning process and (ii) by wet chemical (WC) approach. The CA electrospinning process provides a uniform core-shell structure compared to the WC process. The electron microscopy studies reveal the fibrous microstructure in LLO/S heterostructures with energy dispersive spectroscopy compositional mapping showing the spinel composition on the surface. Higher concentration (&gt;10 wt.%) of spinel coating are shown to break the fibers into particulates. X-ray diffraction and high-resolution transmission electron microscopy analysis confirm the spinel structure formation along with layered structure. While the capacity is slightly compromised compared to the pristine LLO nanofiber, the LLO/S heterostructure with 10 wt.% spinel coating exhibits a high reversible capacity of 268 mAhg<sup>-1</sup> with minimal capacity loss during the 1st cycle (with coulombic efficiency 83.5%) and an excellent high C-rate capability (88 mAhg<sup>-1</sup> at 10C-rate and 55 mAhg<sup>-1</sup> at 20C-rate). The electrochemical studies also demonstrate the importance of optimal spinel content in the coating and the method of spinel coating on the layered material surface. The encapsulation of LLO with spinel layer which has 3D-diffusion pathways for Li-ion transport facilitates high ionic and electronic conductivity and hence leads to enhanced electrochemical performance of LLO/S heterostructured cathodes.</p></div>","PeriodicalId":18265,"journal":{"name":"Materials Research Bulletin","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co-axially electrospun Li-rich layered Oxide@Spinel core-shell heterostructure nanofibers for enhanced stability and electrochemical performance\",\"authors\":\"\",\"doi\":\"10.1016/j.materresbull.2024.113057\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Lithium-rich layered oxides (LLO) possessing high specific capacity has the limitation of voltage fade, poor high C-rate performance and low conductivity. Spinel coating on LLO surface is known to mitigate the voltage fade, however, enabling high C-rate performance remains challenging. In this study, LLO nanofiber core with composition 0.6Li<sub>2</sub>MnO<sub>3</sub>·0.4LiMn<sub>0.25</sub>Ni<sub>0.38</sub>Co<sub>0.37</sub>O<sub>2</sub> is prepared by electrospinning process and the same is coated with spinel LiMn<sub>1.5</sub>Ni<sub>0.5</sub>O<sub>4</sub> shell to obtain LLO/spinel (LLO/S) core-shell heterostructure. The spinel shell coating is accomplished (i) by a novel co-axial (CA) electrospinning process and (ii) by wet chemical (WC) approach. The CA electrospinning process provides a uniform core-shell structure compared to the WC process. The electron microscopy studies reveal the fibrous microstructure in LLO/S heterostructures with energy dispersive spectroscopy compositional mapping showing the spinel composition on the surface. Higher concentration (&gt;10 wt.%) of spinel coating are shown to break the fibers into particulates. X-ray diffraction and high-resolution transmission electron microscopy analysis confirm the spinel structure formation along with layered structure. While the capacity is slightly compromised compared to the pristine LLO nanofiber, the LLO/S heterostructure with 10 wt.% spinel coating exhibits a high reversible capacity of 268 mAhg<sup>-1</sup> with minimal capacity loss during the 1st cycle (with coulombic efficiency 83.5%) and an excellent high C-rate capability (88 mAhg<sup>-1</sup> at 10C-rate and 55 mAhg<sup>-1</sup> at 20C-rate). The electrochemical studies also demonstrate the importance of optimal spinel content in the coating and the method of spinel coating on the layered material surface. The encapsulation of LLO with spinel layer which has 3D-diffusion pathways for Li-ion transport facilitates high ionic and electronic conductivity and hence leads to enhanced electrochemical performance of LLO/S heterostructured cathodes.</p></div>\",\"PeriodicalId\":18265,\"journal\":{\"name\":\"Materials Research Bulletin\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Research Bulletin\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002554082400388X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Research Bulletin","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002554082400388X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

具有高比容量的富锂层状氧化物(LLO)存在电压衰减、高 C 率性能差和导电率低的局限性。众所周知,LLO 表面的尖晶石涂层可减轻电压衰减,但要实现高 C 率性能仍具有挑战性。在这项研究中,通过电纺丝工艺制备了成分为 0.6Li2MnO3-0.4LiMn0.25Ni0.38Co0.37O2 的 LLO 纳米纤维芯,并在其表面镀上了尖晶石 LiMn1.5Ni0.5O4 壳,从而获得了 LLO/尖晶石(LLO/S)核壳异质结构。尖晶石壳涂层(i)通过新型同轴(CA)电纺丝工艺完成,(ii)通过湿化学(WC)方法完成。与 WC 工艺相比,CA 电纺丝工艺能提供均匀的核壳结构。电子显微镜研究揭示了 LLO/S 异质结构中的纤维状微观结构,能量色散光谱成分图显示了表面的尖晶石成分。较高浓度(10 wt.%)的尖晶石涂层可将纤维分解成颗粒。X 射线衍射和高分辨率透射电子显微镜分析证实了尖晶石结构和层状结构的形成。与原始 LLO 纳米纤维相比,LLO/S 异质结构的容量略有下降,但其 10 wt.% 的尖晶石涂层显示出 268 mAhg-1 的高可逆容量,且在第一个循环期间容量损失极小(库仑效率为 83.5%),并具有出色的高 C 速率能力(10C 速率下为 88 mAhg-1,20C 速率下为 55 mAhg-1)。电化学研究还证明了涂层中最佳尖晶石含量和层状材料表面尖晶石涂层方法的重要性。尖晶石层具有锂离子传输的三维扩散途径,它对 LLO 的封装有助于提高离子和电子传导性,从而增强 LLO/S 异质结构阴极的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-axially electrospun Li-rich layered Oxide@Spinel core-shell heterostructure nanofibers for enhanced stability and electrochemical performance

Lithium-rich layered oxides (LLO) possessing high specific capacity has the limitation of voltage fade, poor high C-rate performance and low conductivity. Spinel coating on LLO surface is known to mitigate the voltage fade, however, enabling high C-rate performance remains challenging. In this study, LLO nanofiber core with composition 0.6Li2MnO3·0.4LiMn0.25Ni0.38Co0.37O2 is prepared by electrospinning process and the same is coated with spinel LiMn1.5Ni0.5O4 shell to obtain LLO/spinel (LLO/S) core-shell heterostructure. The spinel shell coating is accomplished (i) by a novel co-axial (CA) electrospinning process and (ii) by wet chemical (WC) approach. The CA electrospinning process provides a uniform core-shell structure compared to the WC process. The electron microscopy studies reveal the fibrous microstructure in LLO/S heterostructures with energy dispersive spectroscopy compositional mapping showing the spinel composition on the surface. Higher concentration (>10 wt.%) of spinel coating are shown to break the fibers into particulates. X-ray diffraction and high-resolution transmission electron microscopy analysis confirm the spinel structure formation along with layered structure. While the capacity is slightly compromised compared to the pristine LLO nanofiber, the LLO/S heterostructure with 10 wt.% spinel coating exhibits a high reversible capacity of 268 mAhg-1 with minimal capacity loss during the 1st cycle (with coulombic efficiency 83.5%) and an excellent high C-rate capability (88 mAhg-1 at 10C-rate and 55 mAhg-1 at 20C-rate). The electrochemical studies also demonstrate the importance of optimal spinel content in the coating and the method of spinel coating on the layered material surface. The encapsulation of LLO with spinel layer which has 3D-diffusion pathways for Li-ion transport facilitates high ionic and electronic conductivity and hence leads to enhanced electrochemical performance of LLO/S heterostructured cathodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Research Bulletin
Materials Research Bulletin 工程技术-材料科学:综合
CiteScore
9.80
自引率
5.60%
发文量
372
审稿时长
42 days
期刊介绍: Materials Research Bulletin is an international journal reporting high-impact research on processing-structure-property relationships in functional materials and nanomaterials with interesting electronic, magnetic, optical, thermal, mechanical or catalytic properties. Papers purely on thermodynamics or theoretical calculations (e.g., density functional theory) do not fall within the scope of the journal unless they also demonstrate a clear link to physical properties. Topics covered include functional materials (e.g., dielectrics, pyroelectrics, piezoelectrics, ferroelectrics, relaxors, thermoelectrics, etc.); electrochemistry and solid-state ionics (e.g., photovoltaics, batteries, sensors, and fuel cells); nanomaterials, graphene, and nanocomposites; luminescence and photocatalysis; crystal-structure and defect-structure analysis; novel electronics; non-crystalline solids; flexible electronics; protein-material interactions; and polymeric ion-exchange membranes.
期刊最新文献
Facile one-step fabrication of Li4Ti5O12 coatings by suspension plasma spraying Enhanced photocathodic protection performance of Co3S4 nanoparticles modified porous BiVO4 composites for 304 stainless steel Microwave, ferroelectric and electromechanical studies of free standing blended electroactive polymer films ZnO/carbon quantum dots nanocomposites derived from Moringa oleifera gum: An improved catalytic vitiation of methylene blue dye Thermal stable NaMgLaTeO6:Dy3+ double perovskite yellow phosphors for w-LEDs and latent fingerprint visualization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1