{"title":"跨视野和绕视野感知分辨率的元认知","authors":"Cheongil Kim , Sang Chul Chong","doi":"10.1016/j.cognition.2024.105938","DOIUrl":null,"url":null,"abstract":"<div><p>Do people have accurate metacognition of non-uniformities in perceptual resolution across (i.e., eccentricity) and around (i.e., polar angle) the visual field? Despite its theoretical and practical importance, this question has not yet been empirically tested. This study investigated metacognition of perceptual resolution by guessing patterns during a degradation (i.e., loss of high spatial frequencies) localization task. Participants localized the degraded face among the nine faces that simultaneously appeared throughout the visual field: fovea (fixation at the center of the screen), parafovea (left, right, above, and below fixation at 4° eccentricity), and periphery (left, right, above, and below fixation at 10° eccentricity). We presumed that if participants had accurate metacognition, in the absence of a degraded face, they would exhibit compensatory guessing patterns based on counterfactual reasoning (“The degraded face must have been presented at locations with lower perceptual resolution, because if it were presented at locations with higher perceptual resolution, I would have easily detected it.”), meaning that we would expect more guess responses for locations with lower perceptual resolution. In two experiments, we observed guessing patterns that suggest that people can monitor non-uniformities in perceptual resolution across, but not around, the visual field during tasks, indicating partial in-the-moment metacognition. Additionally, we found that global explicit knowledge of perceptual resolution is not sufficient to guide in-the-moment metacognition during tasks, which suggests a dissociation between local and global metacognition.</p></div>","PeriodicalId":48455,"journal":{"name":"Cognition","volume":"253 ","pages":"Article 105938"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Metacognition of perceptual resolution across and around the visual field\",\"authors\":\"Cheongil Kim , Sang Chul Chong\",\"doi\":\"10.1016/j.cognition.2024.105938\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Do people have accurate metacognition of non-uniformities in perceptual resolution across (i.e., eccentricity) and around (i.e., polar angle) the visual field? Despite its theoretical and practical importance, this question has not yet been empirically tested. This study investigated metacognition of perceptual resolution by guessing patterns during a degradation (i.e., loss of high spatial frequencies) localization task. Participants localized the degraded face among the nine faces that simultaneously appeared throughout the visual field: fovea (fixation at the center of the screen), parafovea (left, right, above, and below fixation at 4° eccentricity), and periphery (left, right, above, and below fixation at 10° eccentricity). We presumed that if participants had accurate metacognition, in the absence of a degraded face, they would exhibit compensatory guessing patterns based on counterfactual reasoning (“The degraded face must have been presented at locations with lower perceptual resolution, because if it were presented at locations with higher perceptual resolution, I would have easily detected it.”), meaning that we would expect more guess responses for locations with lower perceptual resolution. In two experiments, we observed guessing patterns that suggest that people can monitor non-uniformities in perceptual resolution across, but not around, the visual field during tasks, indicating partial in-the-moment metacognition. Additionally, we found that global explicit knowledge of perceptual resolution is not sufficient to guide in-the-moment metacognition during tasks, which suggests a dissociation between local and global metacognition.</p></div>\",\"PeriodicalId\":48455,\"journal\":{\"name\":\"Cognition\",\"volume\":\"253 \",\"pages\":\"Article 105938\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognition\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010027724002245\",\"RegionNum\":1,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHOLOGY, EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognition","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010027724002245","RegionNum":1,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
Metacognition of perceptual resolution across and around the visual field
Do people have accurate metacognition of non-uniformities in perceptual resolution across (i.e., eccentricity) and around (i.e., polar angle) the visual field? Despite its theoretical and practical importance, this question has not yet been empirically tested. This study investigated metacognition of perceptual resolution by guessing patterns during a degradation (i.e., loss of high spatial frequencies) localization task. Participants localized the degraded face among the nine faces that simultaneously appeared throughout the visual field: fovea (fixation at the center of the screen), parafovea (left, right, above, and below fixation at 4° eccentricity), and periphery (left, right, above, and below fixation at 10° eccentricity). We presumed that if participants had accurate metacognition, in the absence of a degraded face, they would exhibit compensatory guessing patterns based on counterfactual reasoning (“The degraded face must have been presented at locations with lower perceptual resolution, because if it were presented at locations with higher perceptual resolution, I would have easily detected it.”), meaning that we would expect more guess responses for locations with lower perceptual resolution. In two experiments, we observed guessing patterns that suggest that people can monitor non-uniformities in perceptual resolution across, but not around, the visual field during tasks, indicating partial in-the-moment metacognition. Additionally, we found that global explicit knowledge of perceptual resolution is not sufficient to guide in-the-moment metacognition during tasks, which suggests a dissociation between local and global metacognition.
期刊介绍:
Cognition is an international journal that publishes theoretical and experimental papers on the study of the mind. It covers a wide variety of subjects concerning all the different aspects of cognition, ranging from biological and experimental studies to formal analysis. Contributions from the fields of psychology, neuroscience, linguistics, computer science, mathematics, ethology and philosophy are welcome in this journal provided that they have some bearing on the functioning of the mind. In addition, the journal serves as a forum for discussion of social and political aspects of cognitive science.