{"title":"采用沟槽间隙波导技术的小型化宽带圆极化喇叭天线","authors":"Amir Hossein Haghparast;Pejman Rezaei","doi":"10.1029/2024RS007965","DOIUrl":null,"url":null,"abstract":"In this study, a wideband circularly polarized (CP) H-plane horn antenna based on Gap Waveguide (GW) technology in K-band is presented. The proposed antenna consists of two unconnected metal planes. To produce broadband CP radiation, two main methods are utilized. First, two antipodal tapered plates (ATPs) are added in front of the horn. The ATPs are carefully designed for dissimilar polarization orientations. By this technique, the orthogonal electric fields can be prepared. Then, by embedding three metal square pins near the center of the aperture in both inner plates, the impedance bandwidth (BW) and BW of CP radiation of the proposed horn is entirely improved. Its BW for target |S\n<inf>11</inf>\n| < —10 dB is 18—28 GHz. Also, the peak gain fluctuates between 11.5 and 13 dB. This antenna can provide a 3 dB polarization axial-ratio BW of about 28.5% (20–26 GHz). Total radiation efficiency is higher than 94%. To verify the design, the proposed structure is manufactured and tested. The proposed horn antenna result has an appropriate agreement between measurement and simulation. Its miniaturized dimensions, easy and cheap fabrication, and broadband CP capability make it a proper volunteer for broadband communication systems.","PeriodicalId":49638,"journal":{"name":"Radio Science","volume":"59 8","pages":"1-10"},"PeriodicalIF":1.6000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Miniaturized, broadband, circular polarized horn antenna with Groove gap waveguide technology\",\"authors\":\"Amir Hossein Haghparast;Pejman Rezaei\",\"doi\":\"10.1029/2024RS007965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, a wideband circularly polarized (CP) H-plane horn antenna based on Gap Waveguide (GW) technology in K-band is presented. The proposed antenna consists of two unconnected metal planes. To produce broadband CP radiation, two main methods are utilized. First, two antipodal tapered plates (ATPs) are added in front of the horn. The ATPs are carefully designed for dissimilar polarization orientations. By this technique, the orthogonal electric fields can be prepared. Then, by embedding three metal square pins near the center of the aperture in both inner plates, the impedance bandwidth (BW) and BW of CP radiation of the proposed horn is entirely improved. Its BW for target |S\\n<inf>11</inf>\\n| < —10 dB is 18—28 GHz. Also, the peak gain fluctuates between 11.5 and 13 dB. This antenna can provide a 3 dB polarization axial-ratio BW of about 28.5% (20–26 GHz). Total radiation efficiency is higher than 94%. To verify the design, the proposed structure is manufactured and tested. The proposed horn antenna result has an appropriate agreement between measurement and simulation. Its miniaturized dimensions, easy and cheap fabrication, and broadband CP capability make it a proper volunteer for broadband communication systems.\",\"PeriodicalId\":49638,\"journal\":{\"name\":\"Radio Science\",\"volume\":\"59 8\",\"pages\":\"1-10\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radio Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663900/\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radio Science","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663900/","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
摘要
本研究提出了一种基于间隙波导(GW)技术的 K 波段宽带圆极化(CP)H 平面喇叭天线。该天线由两个未连接的金属平面组成。为了产生宽带 CP 辐射,主要采用了两种方法。首先,在喇叭前面增加了两个对顶锥形板(ATP)。ATP 经过精心设计,具有不同的极化方向。通过这种技术,可以制备正交电场。然后,通过在两块内板上靠近孔径中心的位置嵌入三个金属方针,完全改善了拟建喇叭的阻抗带宽(BW)和 CP 辐射带宽。当目标 |S11| < -10 dB 时,其 BW 为 18-28 GHz。此外,峰值增益在 11.5 和 13 dB 之间波动。该天线可提供约 28.5% (20-26 GHz)的 3 dB 极化轴向比频带宽度。总辐射效率高于 94%。为了验证设计,对所提出的结构进行了制造和测试。所提议的喇叭天线的测量结果与模拟结果之间具有适当的一致性。其微型化的尺寸、简便廉价的制造工艺和宽带 CP 能力使其成为宽带通信系统的理想选择。
Miniaturized, broadband, circular polarized horn antenna with Groove gap waveguide technology
In this study, a wideband circularly polarized (CP) H-plane horn antenna based on Gap Waveguide (GW) technology in K-band is presented. The proposed antenna consists of two unconnected metal planes. To produce broadband CP radiation, two main methods are utilized. First, two antipodal tapered plates (ATPs) are added in front of the horn. The ATPs are carefully designed for dissimilar polarization orientations. By this technique, the orthogonal electric fields can be prepared. Then, by embedding three metal square pins near the center of the aperture in both inner plates, the impedance bandwidth (BW) and BW of CP radiation of the proposed horn is entirely improved. Its BW for target |S
11
| < —10 dB is 18—28 GHz. Also, the peak gain fluctuates between 11.5 and 13 dB. This antenna can provide a 3 dB polarization axial-ratio BW of about 28.5% (20–26 GHz). Total radiation efficiency is higher than 94%. To verify the design, the proposed structure is manufactured and tested. The proposed horn antenna result has an appropriate agreement between measurement and simulation. Its miniaturized dimensions, easy and cheap fabrication, and broadband CP capability make it a proper volunteer for broadband communication systems.
期刊介绍:
Radio Science (RDS) publishes original scientific contributions on radio-frequency electromagnetic-propagation and its applications. Contributions covering measurement, modelling, prediction and forecasting techniques pertinent to fields and waves - including antennas, signals and systems, the terrestrial and space environment and radio propagation problems in radio astronomy - are welcome. Contributions may address propagation through, interaction with, and remote sensing of structures, geophysical media, plasmas, and materials, as well as the application of radio frequency electromagnetic techniques to remote sensing of the Earth and other bodies in the solar system.