{"title":"老化过程的广义爱因斯坦关系","authors":"Jing-Dong Bao, Xiang-Rong Wang","doi":"10.1038/s42005-024-01791-7","DOIUrl":null,"url":null,"abstract":"Physical aging appears in many systems ranging from glassy/granular materials, blinking quantum dots to laser-cooled atoms. Aging is a process with three fingerprints: (i) slow, non-exponential relaxation, (ii) breaking of time-translation-invariance, and (iii) dynamical scaling. Here, we show that all these features are present in our minimal Langevin model for aging. A natural extension of the Einstein relation, which was expected to be true in an equilibrium state, is conjectured to hold in aging processes where both the damping and the temperature decrease with time in power-law forms. The generalized Einstein relation can be used to tackle the difficult problem of determining non-ergodic behaviours. The model shows a power-law-type diffusion away from the critical point and a logarithmic Sinai-type ultra-slow diffusion at the critical point. Application to granular gases is also discussed. The authors propose a minimal Langevin model with time-dependent noise, diffusion coefficient, and friction coefficient, which is appropriate to describe cooling environments (granular gases, laser cooling). Assuming that the temperature and the friction coefficient decay in a power-law manner, the generalized Einstein relation is analysed.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-6"},"PeriodicalIF":5.4000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01791-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Generalized Einstein relation for aging processes\",\"authors\":\"Jing-Dong Bao, Xiang-Rong Wang\",\"doi\":\"10.1038/s42005-024-01791-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Physical aging appears in many systems ranging from glassy/granular materials, blinking quantum dots to laser-cooled atoms. Aging is a process with three fingerprints: (i) slow, non-exponential relaxation, (ii) breaking of time-translation-invariance, and (iii) dynamical scaling. Here, we show that all these features are present in our minimal Langevin model for aging. A natural extension of the Einstein relation, which was expected to be true in an equilibrium state, is conjectured to hold in aging processes where both the damping and the temperature decrease with time in power-law forms. The generalized Einstein relation can be used to tackle the difficult problem of determining non-ergodic behaviours. The model shows a power-law-type diffusion away from the critical point and a logarithmic Sinai-type ultra-slow diffusion at the critical point. Application to granular gases is also discussed. The authors propose a minimal Langevin model with time-dependent noise, diffusion coefficient, and friction coefficient, which is appropriate to describe cooling environments (granular gases, laser cooling). Assuming that the temperature and the friction coefficient decay in a power-law manner, the generalized Einstein relation is analysed.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-6\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01791-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01791-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01791-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Physical aging appears in many systems ranging from glassy/granular materials, blinking quantum dots to laser-cooled atoms. Aging is a process with three fingerprints: (i) slow, non-exponential relaxation, (ii) breaking of time-translation-invariance, and (iii) dynamical scaling. Here, we show that all these features are present in our minimal Langevin model for aging. A natural extension of the Einstein relation, which was expected to be true in an equilibrium state, is conjectured to hold in aging processes where both the damping and the temperature decrease with time in power-law forms. The generalized Einstein relation can be used to tackle the difficult problem of determining non-ergodic behaviours. The model shows a power-law-type diffusion away from the critical point and a logarithmic Sinai-type ultra-slow diffusion at the critical point. Application to granular gases is also discussed. The authors propose a minimal Langevin model with time-dependent noise, diffusion coefficient, and friction coefficient, which is appropriate to describe cooling environments (granular gases, laser cooling). Assuming that the temperature and the friction coefficient decay in a power-law manner, the generalized Einstein relation is analysed.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.