William Collins Keith, Farnaz Hemmati, Ravi Sureshbhai Vaghasiya, Farshad Amiri, Panagiotis Mistriotis
{"title":"封闭诱导的活性氧积累对高度运动的癌细胞和非癌细胞的不同影响","authors":"William Collins Keith, Farnaz Hemmati, Ravi Sureshbhai Vaghasiya, Farshad Amiri, Panagiotis Mistriotis","doi":"10.1002/aic.18598","DOIUrl":null,"url":null,"abstract":"<p>In vivo, migrating cells often encounter microenvironments that impose spatial constraints, leading to cell and nuclear deformation. As confinement-induced DNA damage has been linked to the accumulation of reactive oxygen species (ROS), we sought to investigate the impact of oxidative stress on cell behavior within confined spaces. Using microchannel devices that enable control of the degree and duration of cell confinement, we demonstrate that confined migration increases ROS levels in both HT-1080 fibrosarcoma cells and human dermal fibroblasts. Treatment with the antioxidant <i>N</i>-Acetyl-L-cysteine (NAC) counteracts confinement-induced ROS accumulation, suppressing p53 activation and supporting cell survival in both cell lines. This intervention preferentially reduces dorsal perinuclear actin fibers in confined cancer cells. Loss of these fibers is associated with reduced nuclear rupture frequency and increased confined migration speed. Collectively, this work provides insights into the differential effects of ROS on cancerous and non-cancerous cells and suggests that antioxidants may support tumor progression.</p>","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"70 12","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Differential effects of confinement-induced reactive oxygen species accumulation on highly motile cancerous and non-cancerous cells\",\"authors\":\"William Collins Keith, Farnaz Hemmati, Ravi Sureshbhai Vaghasiya, Farshad Amiri, Panagiotis Mistriotis\",\"doi\":\"10.1002/aic.18598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In vivo, migrating cells often encounter microenvironments that impose spatial constraints, leading to cell and nuclear deformation. As confinement-induced DNA damage has been linked to the accumulation of reactive oxygen species (ROS), we sought to investigate the impact of oxidative stress on cell behavior within confined spaces. Using microchannel devices that enable control of the degree and duration of cell confinement, we demonstrate that confined migration increases ROS levels in both HT-1080 fibrosarcoma cells and human dermal fibroblasts. Treatment with the antioxidant <i>N</i>-Acetyl-L-cysteine (NAC) counteracts confinement-induced ROS accumulation, suppressing p53 activation and supporting cell survival in both cell lines. This intervention preferentially reduces dorsal perinuclear actin fibers in confined cancer cells. Loss of these fibers is associated with reduced nuclear rupture frequency and increased confined migration speed. Collectively, this work provides insights into the differential effects of ROS on cancerous and non-cancerous cells and suggests that antioxidants may support tumor progression.</p>\",\"PeriodicalId\":120,\"journal\":{\"name\":\"AIChE Journal\",\"volume\":\"70 12\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AIChE Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aic.18598\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aic.18598","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Differential effects of confinement-induced reactive oxygen species accumulation on highly motile cancerous and non-cancerous cells
In vivo, migrating cells often encounter microenvironments that impose spatial constraints, leading to cell and nuclear deformation. As confinement-induced DNA damage has been linked to the accumulation of reactive oxygen species (ROS), we sought to investigate the impact of oxidative stress on cell behavior within confined spaces. Using microchannel devices that enable control of the degree and duration of cell confinement, we demonstrate that confined migration increases ROS levels in both HT-1080 fibrosarcoma cells and human dermal fibroblasts. Treatment with the antioxidant N-Acetyl-L-cysteine (NAC) counteracts confinement-induced ROS accumulation, suppressing p53 activation and supporting cell survival in both cell lines. This intervention preferentially reduces dorsal perinuclear actin fibers in confined cancer cells. Loss of these fibers is associated with reduced nuclear rupture frequency and increased confined migration speed. Collectively, this work provides insights into the differential effects of ROS on cancerous and non-cancerous cells and suggests that antioxidants may support tumor progression.
期刊介绍:
The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering.
The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field.
Articles are categorized according to the following topical areas:
Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food
Inorganic Materials: Synthesis and Processing
Particle Technology and Fluidization
Process Systems Engineering
Reaction Engineering, Kinetics and Catalysis
Separations: Materials, Devices and Processes
Soft Materials: Synthesis, Processing and Products
Thermodynamics and Molecular-Scale Phenomena
Transport Phenomena and Fluid Mechanics.