{"title":"成年期的复杂饲养会对雄性 C57Bl/6 小鼠下边缘前额叶皮层的兴奋-抑制平衡产生状态依赖性影响。","authors":"","doi":"10.1016/j.bbr.2024.115233","DOIUrl":null,"url":null,"abstract":"<div><p>The prefrontal cortex (PFC) plays an important role in social behavior and is sensitive to stressful circumstances. Challenging life conditions might change PFC function and put individuals at risk for maladaptive social behavior. The excitation-inhibition (EI) balance of prefrontal neurons appears to play a crucial role in this process. Here, we examined how a challenging life condition in C57BL/6JolaHsd mice, i.e. group-housing 6 mice in a complex environment for 10 days in adulthood, changes the EI-balance of infralimbic prefrontal neurons in layer 2/3, compared to standard pair-housing. Slices were prepared from “undisturbed” mice, i.e. the first mouse taken from the cage, or mice taken ∼15 min later, who were mildly aroused after removal of the first mouse. We observed a housing-condition by arousal-state interaction, with in the complex housing group an elevated EI-balance in undisturbed and reduced EI-balance in mildly aroused animals, while no differences were observed in standard housed animals. The change was explained by a shift in mIPSC and mEPSC frequency, while amplitudes remained unaffected. Female mice showed no housing-by-state interaction, but a main effect of housing was found for mIPSCs, with a higher frequency in complex- versus standard-housed females. No effects were observed in males who were complex-housed from a young age onwards. Explorative investigations support a potential mediating role of corticosterone in housing effects on the EI-balance of males. We argue that taking the arousal state of individuals into account is necessary to better understand the consequences of exposure to challenging life conditions for prefrontal function.</p></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0166432824003899/pdfft?md5=cfa86fc9eacd3af326df587150f5153b&pid=1-s2.0-S0166432824003899-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Complex housing in adulthood state-dependently affects the excitation-inhibition balance in the infralimbic prefrontal cortex of male C57Bl/6 mice\",\"authors\":\"\",\"doi\":\"10.1016/j.bbr.2024.115233\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The prefrontal cortex (PFC) plays an important role in social behavior and is sensitive to stressful circumstances. Challenging life conditions might change PFC function and put individuals at risk for maladaptive social behavior. The excitation-inhibition (EI) balance of prefrontal neurons appears to play a crucial role in this process. Here, we examined how a challenging life condition in C57BL/6JolaHsd mice, i.e. group-housing 6 mice in a complex environment for 10 days in adulthood, changes the EI-balance of infralimbic prefrontal neurons in layer 2/3, compared to standard pair-housing. Slices were prepared from “undisturbed” mice, i.e. the first mouse taken from the cage, or mice taken ∼15 min later, who were mildly aroused after removal of the first mouse. We observed a housing-condition by arousal-state interaction, with in the complex housing group an elevated EI-balance in undisturbed and reduced EI-balance in mildly aroused animals, while no differences were observed in standard housed animals. The change was explained by a shift in mIPSC and mEPSC frequency, while amplitudes remained unaffected. Female mice showed no housing-by-state interaction, but a main effect of housing was found for mIPSCs, with a higher frequency in complex- versus standard-housed females. No effects were observed in males who were complex-housed from a young age onwards. Explorative investigations support a potential mediating role of corticosterone in housing effects on the EI-balance of males. We argue that taking the arousal state of individuals into account is necessary to better understand the consequences of exposure to challenging life conditions for prefrontal function.</p></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0166432824003899/pdfft?md5=cfa86fc9eacd3af326df587150f5153b&pid=1-s2.0-S0166432824003899-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432824003899\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432824003899","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Complex housing in adulthood state-dependently affects the excitation-inhibition balance in the infralimbic prefrontal cortex of male C57Bl/6 mice
The prefrontal cortex (PFC) plays an important role in social behavior and is sensitive to stressful circumstances. Challenging life conditions might change PFC function and put individuals at risk for maladaptive social behavior. The excitation-inhibition (EI) balance of prefrontal neurons appears to play a crucial role in this process. Here, we examined how a challenging life condition in C57BL/6JolaHsd mice, i.e. group-housing 6 mice in a complex environment for 10 days in adulthood, changes the EI-balance of infralimbic prefrontal neurons in layer 2/3, compared to standard pair-housing. Slices were prepared from “undisturbed” mice, i.e. the first mouse taken from the cage, or mice taken ∼15 min later, who were mildly aroused after removal of the first mouse. We observed a housing-condition by arousal-state interaction, with in the complex housing group an elevated EI-balance in undisturbed and reduced EI-balance in mildly aroused animals, while no differences were observed in standard housed animals. The change was explained by a shift in mIPSC and mEPSC frequency, while amplitudes remained unaffected. Female mice showed no housing-by-state interaction, but a main effect of housing was found for mIPSCs, with a higher frequency in complex- versus standard-housed females. No effects were observed in males who were complex-housed from a young age onwards. Explorative investigations support a potential mediating role of corticosterone in housing effects on the EI-balance of males. We argue that taking the arousal state of individuals into account is necessary to better understand the consequences of exposure to challenging life conditions for prefrontal function.
期刊介绍:
Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.